
Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

ACOUSTIC SCENE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS

Daniele Battaglino∗†, Ludovick Lepauloux∗ and Nicholas Evans†

∗ NXP Software
Mougins, France

† EURECOM
Biot, France

ABSTRACT

Acoustic scene classification (ASC) aims to distinguish between
different acoustic environments and is a technology which can be
used by smart devices for contextualization and personalization.
Standard algorithms exploit hand-crafted features which are un-
likely to offer the best potential for reliable classification. This
paper reports the first application of convolutional neural networks
(CNNs) to ASC, an approach which learns discriminant features
automatically from spectral representations of raw acoustic data. A
principal influence on performance comes from the specific convo-
lutional filters which can be adjusted to capture different spectro-
temporal, recurrent acoustic structure. The proposed CNN ap-
proach is shown to outperform a Gaussian mixture model baseline
for the DCASE 2016 database even though training data is sparse.

Index Terms— acoustic scene classification, convolutional
neural networks, local binary patterns, spectrogram

1. INTRODUCTION

Acoustic scene classification (ASC) [1] is a recent area of research
which aims to categorize an acoustic scene through contextual
sounds. A smart objects or device can exploit information extracted
from its immediate soundscape [2] to adjust system or application
parameters or behavior to meet consumer demands for contextual-
ization and personalization. One real example of such technology
is an automatic process to increase a ringtone volume when a smart
phone is moved from a quieter environment into a noisier one.

Acoustic scenes usually exhibit a high degree of variability,
both inter class and intra class. ASC is thus arguably among the
most challenging of statistical pattern recognition tasks. Almost all
current approaches rely on hand-crafted features chosen specifically
to facilitate discrimination between an often-small set of known
acoustic classes. With the variability in acoustic scenes being so
high, the premise of the research presented here is that hand-crafted
features are a bottleneck to ASC performance and that automati-
cally derived features have greater potential.

Deep learning techniques have brought tremendous advances
in a huge range of different statistical pattern recognition applica-
tions [3] and is now the state of the art in many, if not the majority.
These techniques and tools offer one alternative to hand-crafted fea-
tures and a suite of different approaches to automatic feature learn-
ing from raw input data (e.g. images and audio recordings).

This paper reports what is, to the best of the authors’ knowl-
edge, the first attempt to harness the power of automatic feature
learning for ASC using a deep learning architecture known as a con-
volutional neural network (CNN). CNNs operate on a raw spectro-
gram representation of the acoustic data, thereby avoiding reliance
on hand-crafted features.

The remainder of this paper is organized as follows. Section 2
summarizes the prior work in ASC. Section 3 presents the new CNN
approach to ASC with an emphasis on its adaptation to acoustic
data. Section 4 describes specific implementation details, an as-
sessment protocol and experimental results. Conclusions, discus-
sion and suggestions for further work are presented in Section 5.

2. PRIOR WORK

The literature shows that the majority of approaches to ASC uti-
lize features developed for speech and music processing tasks such
as speech or genre recognition. Examples include Mel-scaled fre-
quency cepstral coefficients (MFCCs), spectral flatness, spectral
centroid, and the zero-crossing rate [4, 5]. Some recent work [6],
however, shows that such features may not be sufficiently discrim-
inative for ACR. MFCC features, for example, capture only short
term variation but only minimum dynamic information, informa-
tion which is useful to discriminate between different contexts.

The work in [6] shows the benefit of capturing auto-correlation
in the temporal domain through a similarity matrix which reflects
recurrent, dynamic structure. The work in [7] showed similar per-
formance gains. Accordingly, advanced time-frequency features for
ACR have attracted growing attention. Some of this work has drawn
upon methods popular in other two-dimensional problems such as
image processing, e.g. local binary pattern (LBP) analysis applied
to spectrogram images [8] and histogram of gradient (HOG) ap-
proaches [9].

Having been applied so successfully to other, related problems,
deep learning techniques [10] are now emerging [11]. Deep neural
networks (DNNs) are able to identify and extract optimized, dis-
criminant features from training data and thus offer one alternative
to hand-crafted features. Many different architectures and data in-
put representations have been investigated for a host of different
applications such as image and speech recognition [12, 13].

While the first investigation of DNN approaches to ASC [11]
showed promising results, the work was based upon MFCC input
features. The potential benefit of deep learning was thus still curbed
by the initial use of hand-crafted features.

While significant progress in ASC has been made in recent
times, we argue that the reliance of the past work on hand-crafted
features remains a bottleneck. We have thus sought to improve ASC
performance through the application of automatic feature learning.
This paper reports our first experiments with a particular approach
to deep learning involving convolutional neural networks (CNNs).

3. CONVOLUTIONAL NEURAL NETWORK FOR ASC

In continuation of our previous work [8], this paper reports the ap-
plication of a convolutional neural network (CNN) to the task of
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Figure 1: The CNN architecture used in this work. The input is static and dynamic spectrograms. These are followed by two, stacked
convolutional and pooling layers. Fully connected and output layers produce the probabilities of the input data belonging to each acoustic
class. Convolutional filters are illustrated in light orange while pooling blocks are illustrated in dark green.

ASC. CNNs have been used successfully in a wide variety of related
tasks such as speech recognition [14], music analysis [15] and event
detection [16]. The motivation behind this the adoption of this ap-
proach for ASC lies in (i) the potential to use a raw time-frequency
representation as the input, (ii) the replacement of hand-crafted fea-
tures with automatically learned features and (iii) the potential to
capture recurrent, spectro-temporal structure.

3.1. Global architecture

CNNs have a multi-layered, deep network architecture. While is
some sense a natural extension of the standard multilayer percep-
tron model, they exhibit some significant differences: first, CNNs
can handle high-dimensional data; second, each hidden unit is con-
nected only to a sub-region of the input data, referred to as the re-
ceptive field, and thus captures only local structure; third, CNNs can
capture recurrent local structure. The architecture proposed in this
work is illustrated in Fig. 1. It is composed of an input layer, a stack
of convolutional and pooling layers, a fully connected hidden layer
and a final output layer.

3.2. Input data

In the application of CNNs to computer vision tasks, individual im-
ages are typically split into different color channels (e.g. red, green
and blue). Each hidden unit then has access to the corresponding
receptive field in each color channel [12]. This same idea can be
adopted in the application of CNNs to ASC. As illustrated in Fig. 2,
input images take the form of (i) a static, log-Mel spectrogram and
(ii) a separate, dynamic spectrogram representation composed of its
first derivatives (∆). These two representations form a two-channel
input to the network so that hidden units can combine static and
dynamic information.

One further operation is required in order that the CNN is fed
with representations of fixed-size. As also illustrated in Fig. 2, both
static and dynamic spectrograms are segmented into smaller com-
ponents which are treated as independent inputs. As a result, the
input data is artificially augmented, the resolution of the CNN is
increased whereas the complexity is reduced.

3.3. Convolutional layer

Complex acoustic scenes contain discriminative spectro-temporal
recurrent structure, e.g. engine noise and telephone ringtones.
These characteristics are referred to here as local patterns, namely
a recurrent concentration of energy over both frequency and time.
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Figure 2: CNN input data is a pair of static (log-Mel) and dynamic
(first derivatives, ∆) spectrograms. Each is first segmented into
smaller sub-clip illustrated in red, each then forming separate in-
put data.
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Figure 3: An example convolution between a 3 × 3 block of input
data (the receptive field) and a convolutional filter with weights W
(expressed in the bottom right corner of the image).

Engine noise, for example, is characterized by a predominant lo-
cal pattern spanning the time axis whereas ringtones may exhibit a
recurrent pattern spanning the frequency axis.

Such local patterns can be represented through a convolution
operation between an input I and a set of filter weights W which
produces an output O:

O[i, j] = I[i, j] ∗W [i, j] =

∞∑
u=−∞

∞∑
v=−∞

I[u, v]W [i− u, j − v]

where i and j are row and column indices of I , and u and v are
row and column indices of W . The two-dimensional convolution
operation is illustrated in Fig. 3 for a filter W centered on the lower
right component of the input image I .

The convolution is the heart of the convolutional layer in the
CNN. Each output of the hidden unit, denoted hij , is linked to a
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Figure 4: An illustration of the application of CNNs to the input
data showing: (1) the local connectivity between each hidden unit
and the receptive field at coordinates i, j in the input layer; (2) the
use of multiple input layers (referred to as channels) which maintain
the same relationship between receptive fields and hidden units; (3)
the use of the same filter weights W which are shared for all input
layers and thus capture similar, recurrent patterns in the input data.

local receptive field in the input data centred on the i, j coordinates
of input data I through filter weights W :

hij = σ((W ∗ I)ij + b)

where σ is a non-linear activation function and b is a bias. Weights
are shared among different hidden layer units in order to reduce the
total number of trainable parameters. An example of local hidden
units with shared weightsW is illustrated in Fig. 4. Hidden unit out-
puts hij form new layers of spatially connected neurons which are
referred to as feature maps. Different feature maps can be formed
from different combinations of locally connected hidden units, each
sharing the same weights applied to different positions of the input
space.

3.4. Pooling layer

Pooling layers are applied to the output of each convolutional layer
in order to reduce their resolution. Different strategies can be ap-
plied. Among the simplest is a max operation whereby a block of
values in the pooling layer input are replaced with their single, max-
imum value. What is effectively an operation of down-sampling has
been shown to not only reduce dimensionality, but also to provide
invariance to the translation of structure in the input [14].

For the ASC task, this properly provides invariance to small
changes in spectro-termporal structure. For example, the same lo-
cal pattern (e.g. engine noise) centered on a specific frequency may
vary only marginally from one recording to another. The pooling
operation allows to reduce the frequency or time resolution giving
more importance to the pattern rather than its spectro-temporal lo-
cation.

3.5. Fully connected layer

Convolutional and pooling layers can be replicated in sequence in
order to add depth and to produce higher level representations of
the input. Classification is finally achieved via fully connected and
softmax layers. Inputs are the full set of outputs emerging from the
last convolutional or pooling layer. Outputs of the fully connected

Figure 5: An illustration of the 3 × 3 filter weights W of the first
CNN layer.

layer are again fully connected. By definition, fully connected lay-
ers do not operate at a local level and instead act to classify the input
as one of the output acoustic scenes.

Each input segment (of the original, full spectrogram) is classi-
fied independently. The most probable acoustic scene or class ŷ is
identified with a softmax function. The classification for the spec-
trogram as a whole is made according to a majority vote. The ob-
jective function used for CNN training (i.e. for the optimization of
model parameters W and b) is the minimization of a loss function l
between target y and predictions ŷ over N input samples:

l(θ = {W, b}, N) = − 1

N

N∑
n=1

yn log ŷn + (1− yn) log(1− ŷn)

3.6. Insights

Thus far our experiments with CNNs have investigated the influence
of the convolutional filter structure on classification performance.
One can readily see that differences in height and width will alter the
relative importance of spectral and temporal variation. Relatively
square-shaped filters will place similar importance on both spectral
and temporal variation. Example filters obtained from the first CNN
layer are illustrated in Fig. 5. They show an interesting similarity to
uniform local binary patterns [17] used in our previous approach to
ASC [8].

Filter patterns different to those in Fig. 5 are obtained by alter-
ing the dimensions of the convolutional filters. As reported below,
we have found that tall and narrow filter shapes tend to give the best
performance. While this observation is illustrative of the delicate
balance one must strike between the relative importance of spectral
and temporal variation and resolution, clearly both are important to
the task of ASC.

4. EXPERIMENTS AND RESULTS

Described here are specific details of our implementation and ASC
results for the DCASE 2016 database [18]. Since the later is a stan-
dard database used by all challenge participants, it is not described
in detail here.

4.1. Implementation details

Audio signals are first treated in the usual way from the application
of the discrete Fourier transform to 40ms frames with an overlap
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Table 1: ASC performance for the DCASE 2016 development set.
Results illustrated for the baseline GMM system and the proposed
CNN approach.

Method accuracy fold1 fold2 fold3 fold4
GMM 72.6% 67.2% 68.9% 72.3% 81.9%
CNN 76.0% 80.6% 67.0% 77.9% 78.7%

of 20ms. Static spectrograms are formed from magnitude spec-
tra which are passed through a bank of 60 log and Mel-scaled fil-
ters [19] with a maximum frequency of 22050 Hz. Dynamic ∆
spectrograms are calculated in the usual way with a time-window
of 9 frames. Each 30s clip of the DCASE database is thus split into
25 sub-clips of 1.2 seconds duration. Each sub-clip is furthermore
represented with both static and dynamic spectrogram segments, as
illustrated in Fig. 2, resulting in input data of 60 bands× 60 frames.

The CNN has two stacked pairs of convolution and pooling.
The first convolutional layer contains 32 filters each of which spans
57 frequency bands and 6 frames (342 elements). This results in
a set of 32 feature maps each of 4 bands and 55 frames (220 ele-
ments). On account of the relative dimensions of spectrograms and
filters and the overlap inherent to the convolution, the frequency
resolution is reduced whereas the time resolution is increased. The
pooling layer performs max-pooling over 2 adjacent units in both
frequency and time, reducing by one half the dimension of the pre-
vious convolutional layer. A second convolutional layer creates 32
feature maps using filters each of which spans 1 band and 2 frames
(2 elements). We have used a linear rectifier for the activation func-
tion of the convolutional hidden units which is preferred for the
modeling of real values [20].

The fully connected layer is comprised of 2000 nodes and is
followed by a softmax layer which returns output probabilities for
all 15 DCASE classes. Regularization is performed using a 50%
dropout [21] both before and after the fully connected layer. Data is
treated in batches of 1000 input samples and the network is trained
for 100 epochs. The learning rate is set to 0.001 with an initial
momentum [22] of 0.9 which is increased linearly to 0.99 for the
final epoch.

4.2. Protocols

In order to perform supervised classification, we created an addi-
tional validation set which was randomly selected from the training
set (i.e. 20% of the training data in each fold, corresponding to 8
files). This validation set is used for CNN learning since model
parameters are tuned on the validation loss.

4.3. Results

Classification results are illustrated in Table 1 for both the Gaus-
sian mixture model DCASE baseline system and the new CNN ap-
proach reported in this paper. Results are illustrated in terms of av-
erage accuracy (second column) and individually for each of the 4
folds (columns 3–6). The average accuracy is seen to improve from
72.6% for the baseline system to 76.0% for the CNN system. Also
illustrated is a high degree of variation between folds. This varia-
tion is consistent for both GMM and CNN systems and is probably
a consequence of limited data.

As discussed in Section 3, the shape of the convolutional fil-
ters can be adjusted to balance the relative importance of spectral
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Figure 6: Accuracy per class for two convolutional filter variants:
red bars illustrate performance for the proposed method for a ‘tall
and thin’ filter with 57 bands and 6 frames; those in green illustrate
performance for a ‘short and fat’ filter with 6 bands and 57 frames.

and temporal information. This effect of filter shape is illustrated in
Fig. 6 which illustrates average accuracy independently for each of
the 15 DCASE classes for two different convolutional filter shapes.
The first filter is the same as that for which results are reported
above. These result are illustrated with red bars in Fig. 6. Instead of
the ‘tall and thin’ filter used for all experiments reported above, the
second filter is ‘short and fat’. This filter places more emphasis on
temporal variation. Results for the second filter are illustrated with
green bars in Fig. 6. Whereas the first filter outperforms the second,
differences serve to illustrate the effect of filter shape; the second
filter delivers better performance for classes with greater temporal
recurrent structure, such as bus or car noise. These observations
warrant investigation in future research.

5. CONCLUSIONS

This paper describes the first application of convolutional neural
networks (CNNs) to acoustic scene classification. In contrast to past
work which has used almost exclusively hand-crafted features, the
paper shows how CNNs can be used to learn recurrent, local pat-
terns automatically from spectro-temporal representations of raw
acoustic data. Local patterns are captured through a combination of
convolutional and pooling layers which produce higher level rep-
resentations of the input data. While different convolutional filter
shapes capture different degrees of spectro-temporal structure, tall
and thin convolutional filter shapes, which offer better resolution in
the frequency domain, give the best performance for the standard
DCASE database.

While the CNN approach to ASC proposed in this paper is
shown to outperform the baseline system, performance assessed on
the evaluation set may yet prove disappointing. Unfortunately, lack
of sufficient data may cause a severe bottleneck, offering limited po-
tential to avoid over-fitting. With evaluation restrictions on the use
of external data, an assessment of generalization remains a direction
for future work.

Nonetheless, external data, albeit unlabeled is available in abun-
dance. The ASC approach reported in this paper is readily adapted
to unsupervised feature learning. Only then may the true potential
of CNNs for ASC be revealed. Future work should include a thor-
ough investigation of different spectro-temporal representations as
CNN input data and of different convolutional filters.
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