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ABSTRACT

This report describes our contribution to the 2016 IEEE AASP
DCASE challenge for the acoustic scene classification task. We pro-
pose a feature learning approach following the idea of decomposing
time-frequency representations with nonnegative matrix factoriza-
tion. We aim at learning a common dictionary representing the data
and use projections on this dictionary as features for classification.
Our system is based on a novel supervised extension of nonnegative
matrix factorization. In the approach we propose, the dictionary and
the classifier are optimized jointly in order to find a suited represen-
tation to minimize the classification cost. The proposed method sig-
nificantly outperforms the baseline and provides improved results
compared to unsupervised nonnegative matrix factorization.

Index Terms— Acoustic Scene Classification, Feature learn-
ing, Matrix Factorization

1. INTRODUCTION

The Acoustic Scene Classification problem (ASC) has mainly been
addressed by finding the features that can best represent the scenes.
Many works, including some submissions to the last edition of the
challenge, considered the use of speech inspired features such as
Mel Frequency Cepstral Coefficients combined with other low level
features (zero-crossing rate, spectral centroid,...) [1]. Another no-
table trend has been to extract image processing features from time-
frequency images such as histograms of oriented gradients [2, 3].
The main drawback of such hand crafted features is their lack of
flexibility as, by definition, they focus on describing a specific as-
pect of the signal. Instead, many other sound classification tasks
benefited from the success of feature learning techniques in order
to learn adapted representations of the data. For example, in ASC,
some works successfully proposed the use of unsupervised feature
learning techniques such as nonnegative matrix factorization (NMF)
[4, 5].

Our system further exploits the advantages of NMF for feature
learning when compared to conventional hand crafted features. Af-
ter building a time-frequency representation of the data, NMF is
applied to jointly learn a dictionary and an activation matrix. The
activation matrix contains the projection of the data on the learned
dictionary and will be used as the learned features as detailed in
[5]. In ASC, NMF is usually applied in an unsupervised setting,
meaning the labels are not used during the decomposition step. The
method we propose corresponds to a supervised extension of the
NMF model which takes advantage of the scene labels to get a de-
composition that will help discriminating the scenes. It mainly ex-
tends the Task-driven dictionary learning (TDL) model proposed
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in [6]. The TDL model aims at learning a representation which
will minimize the classification cost by jointly optimizing the dic-
tionary and a binary classifier in a common problem. We propose a
novel extension of the general TDL model which links the NMF de-
composition to a multinomial logistic regression classifier. We also
present our modification of the TDL algorithm used to generate the
predictions for our submission to the challenge.

2. DATA MATRIX CONSTRUCTION

In this section, we describe the construction of the data matrix used
as the input representation of the supervised feature learning step. It
is identical to the one we presented in [5]. The different data matrix
construction steps are illustrated in Figure 1.

2.1. Time-frequency representation

The time-frequency representations of the scene recordings are ex-
tracted from the signals using a Constant Q-transform (CQT). We
denote S ∈ RP×T+ as the CQT transform of a given recording,
where T is the number of time frames and P is the number of fre-
quency bands. Without loss of generality, the recordings are as-
sumed to have equal length, which is the case for the challenge
dataset.

2.2. Spectrogram pooling

In order to construct the data matrix from the time frequency im-
ages, we apply two simple slicing and pooling steps. They aim at
reducing the dimensionality of the data while providing a suited
representation to the feature learning step. To do so, we start by
dividing each time frequency image into M non-overlapping slices
of length Q = T/M . We use Sm to denote the Q-frames long
spectrogram slice starting Q×m frames after the beginning of the
recording. The CQT image S is now considered as a set of con-
secutive shorter spectrograms S = [S0, ..., SM−1]. Each of the M
spectrogram slices are then averaged over time resulting in M vec-
tors. Assuming we have L training examples, every recording is
now represented by a set of vectors V(l) = [v(l)

0 , ..., v(l)
M−1] where

v(l)
m is a vector of size P obtained by averaging the slice S(l)

m over
time. We extract the L sets of vectors V(l) in the training set and
stack them column-wise to build the data matrix V ∈ RP×N+ , where
V = [V(1), ...,V(L)] and N = ML.

3. SUPERVISED NONNEGATIVE MATRIX
FACTORIZATION

In this section, we first briefly present the unsupervised NMF and
Sparse NMF problems. Then, we present the supervised dictionary
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Figure 1: Building steps of the data matrix V, input representation
for the matrix factorizations

model (TDL) in its original formulation. Finally, we propose some
modifications to the model and the algorithm.

3.1. Nonnegative matrix factorization for unsupervised learn-
ing

3.1.1. Original formulation

Nonnegative matrix factorization is a well known technique [7] to
decompose nonnegative data into nonnegative dictionary elements.
Many problems benefit from the nonnegative aspect of the decom-
position to learn better representations of the data, especially in the
audio processing field. In NMF, the goal is to find a decomposition
that approximates a data matrix V ∈ RP×N+ such as V ≈WH with
W ∈ RP×K+ and H ∈ RK×N+ . The matrix W corresponds to the
dictionary of basis vectors and the matrix H is the activation matrix
containing the projections of V on the dictionary. NMF is obtained
solving the following optimization problem:

min
W,H

Dβ(V|WH) s.t. W,H ≥ 0, (1)

where Dβ is a separable divergence which is commonly chosen to
be the β-divergence [8].

3.1.2. Sparse NMF

Sparsity is often desired in matrix factorization in order to provide a
more robust and interpretable decomposition. We present the sparse
NMF formulation as proposed in [9] but there are many other ways
of enforcing sparsity in NMF. Here, a l1-norm penalty term on the
activation matrix H is added to the problem while a unit l2-norm
constraint is applied on the dictionary elements. The matrices W
and H are the solution of the following problem:

min
W,H≥0

∑
i

Dβ(vi,
∑
k

hki
wk
‖wk‖2

) + λ1

∑
i,k

hik, (2)

where wk is the dictionary column indexed by k, 1 ≤ k ≤ K.

3.2. Supervised learning with nonnegative matrix factorization

3.2.1. Task-driven dictionary learning model

The general idea of TDL is to group the dictionary learning and the
training of the classifier in a joint optimization problem. Influenced
by the classifier, the basis vectors are encouraged to explain the dis-
criminative information in the data while keeping a low reconstruc-
tion cost. The TDL model first considers the optimal projections
h?(v,W) of the data point v on the dictionary W. The projections
are defined as solutions of the elastic-net problem [10] expressed
as:

h?(v,W) = min
h∈RK

1

2
‖v−Wh‖22 + λ1‖h‖1 +

λ2

2
‖h‖22. (3)

Given each data point v is associated with a label y in a fixed set of
labels Y , a classification loss ls(y,A,h?(v,W)) is defined, where
A are the parameters of the classifier. The TDL problem is now
expressed a joint minimization in W and A of the expected classifi-
cation cost:

min
W∈W,A

f(W,A) +
ν

2
‖A‖22, (4)

with
f(W,A) = Ey,v[ls(y,A,h?(v,W)]. (5)

Here,W is defined as the set of dictionaries containing unit l2 norm
basis vectors and ν is a regularization parameter on the classifier’s
parameters to prevent over fitting. The problem in equation (5) is
optimized with stochastic gradient descent. After randomly draw-
ing a data point v, the optimal projection h?(v,W) is first com-
puted. Then, the dictionary W and the classifier parameters A are
updated by projected gradient. We refer the interested reader to [6]
for a more complete description of the model.

3.2.2. Adapting to the task

The original formulation supposes each projection h?(v,W) is
classified individually. Instead, we want to classify the mean of the
projections of the data points v(l) belonging to the sound example
l ∈ [[1, L]] with V(l) = [v(l)

0 , ..., v(l)
M−1] (see section 2.2). We de-

fine h(l) as the averaged projection of V(l) on the dictionary, where
h(l) = 1

M

∑M
m=1 h

?(v(l)
m ,W). Thus, the classification expected

cost is now expressed as:

f(W,A) = Ey,V[ls(y,A,h(l))]. (6)

This alternate formulation only slightly modifies the gradients of
f(W,A) with respect to W and A. The other changes include:

• The application of the model for the multinomial logistic re-
gression classification case. Compared to the two class formu-
lation chosen in [6], it has the advantage of learning a common
dictionary for all the labels instead of relying on a one-versus-
all strategy. Expressing the gradients of f with respect to W
for the multi-logit cost is rather straightforward.

• A nonnegative version of the problem. Although it was men-
tioned as possible by the authors in [6], it has not been applied
and leads to improved results in our case.

3.2.3. Modified algorithm

We also propose a slight change in the algorithm proposed in [6]
which we found easier to tune and provided better results for our
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problem. The changed algorithm is presented in Algorithm 1. It
alternates between an update of the classifier using the full set of
projections and an update of the dictionary by stochastic projected
gradient on a full epoch. An epoch is defined as a full pass through
a random permutation of the training set resulting in the number
of iterations I being the number of passes through the data. The
multinomial logistic regression parameters A are no longer updated
with stochastic gradient descent but with one iteration of the L-
BFGS algorithm [11] using the full set of averaged projections in
H?(V,W) = [h(1), ...,h(L)]. Here, ∇Wls(y,A,h?) is the gradi-
ent of the classification cost with respect to the dictionary W and ρ
is the projected gradient step. The operation ΠW is the projection
on W , the set of nonnegative dictionaries with unit `2 norm basis
vectors.

Algorithm 1 Modified algorithm for the nonnegative TDL model
Require: V,W ∈ W,A, λ1, λ2, ν, I, ρ

for i = 1 to I do
∀l ∈ [[1, L]] compute h(l) = 1

M

∑M
m=1 h

?(v(l)
m ,W)

Set H?(V,W) = [h(1), ...,h(L)]
Update A with one iteration of L-BFGS
for n = 1 to N do

Draw a random data point v and its label y
Compute h? = h?(v,W)
Compute∇Wls(y,A,h?) as in [6]
W← ΠW [W− ρ∇Wls(y,A,h?)]

end for
end for
return W,A

4. EVALUATION ON THE DEVELOPMENT SET

In this section, we evaluate the proposed system on the challenge
development set. The results are given in average classification ac-
curacy over the same 4 train-test folds provided by the organizers.

4.1. Time-frequency representation extraction

The CQT were extracted with the YAAFE toolbox [12] after normal-
izing the signals. The CQT is computed using 24 frequency bands
per octave from 5 to 22050 Hz resulting in P = 291 frequency
bands. The recordings are 30 seconds long, the CQT are extracted
using 30 ms windows without overlap resulting in T = 1000 time
frames. In order to build the data matrix (see Section 2.2), we use
1-s long slices leading to M = 30 slices per example. A square
root compression is applied to the data matrix followed by a scaling
to unit variance.

4.2. Results with the nonnegative TDL

The results obtained when applying the nonnegative TDL to per-
form supervised matrix factorization are presented in Table 1. We
also include the results obtained with the sparse NMF formulation
given in equation (2), which can be seen as the nonnegative TDL’s
unsupervised counterpart. Here, Dβ is the Euclidean distance cor-
responding to β = 2. We also use Sparse NMF to initialize the
dictionaries for the TDL model. The weights of the classifier are
initialized by applying the multinomial logistic regression to the
projections on the initialized dictionary. In the proposed algorithm,

K=128 K=256 K=512
Sparse NMF 81.0 81.2 82.6

Nonnegative TDL 84.2 85.0 84.8

Table 1: Accuracy scores for the nonnegative TDL model compared
to the Sparse NMF results on different dictionary sizes K

the projections on the dictionary (corresponding to equation (3))
are computed using the lasso function from the spams toolbox [13],
which also supports nonnegative projections. Then, the classifier (a
logistic regression) is updated using one iteration of the scikit-learn
[14] implementation of the logistic regression updated with the L-
BFGS algorithm. The model is trained on I = 10 iterations with a
ρ = 0.001 initial gradient step for the dictionary update. We apply
the same heuristic for the decaying over iterations of the gradient
step as suggested in [6]. For the different regularization parameters,
λ1 = 0.2, λ2 = 0 and ν = 10 were found to be good values on the
development set.

The results in Table 1 show that the proposed supervised NMF
performs better than the Sparse NMF for all dictionary sizes. It
also has the advantage of learning good representations for lower
dictionary sizes, reaching a 84.2% accuracy for K = 128.

4.3. Final system: combining the outputs

In this section we present the final system used to predict the output
labels submitted to the challenge. Most NMF variants are known
to be sensitive to initialization, its also the case for the nonnegative
TDL model. Therefore, in order to improve the robustness of our
system, we propose to combine the outputs of several occurrences
of the algorithm. To do so, we apply the nonnegative TDL model
to learn a set of 4 different dictionaries W = [W1...W4]. We then
apply the following steps:

• Learn W1 and W2 on two different initializations forK = 256
and W3 and W4 on two different initializations for K = 512

• Compute the optimal projections on each dictionary
• Fit a multinomial logistic regression to each of the projection

matrices.
• Average the log-probabilities outputs of each classifier
• For each test data point: predict the final label by choosing the

one with the highest average log-probability

The final results obtained by combining the outputs are pre-
sented in Table 2. The proposed combination slightly improves the
performance when compared to individual occurrences of the model
on the development dataset. It allows us to take advantage of the
slight randomness of the model by providing more robust results.
The proposed system also significantly improves the baseline re-
sults by reaching a 86.2% accuracy on the development dataset and
a 87.7% accuracy on the evaluation dataset. The confusion matrix
for the output combination on the development dataset is presented
in Table 3. We can see that most confusions are between classes
with similar backgrounds or containing many acoustic events of the
same nature. For example, our system confuses Residential Area
with Park as well as Home with Office. The rest of the classes are
classified rather easily.
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Bus Bea. C\R Car CC FP GS Home Lib. MS Off. Park RA Tra. Tram
Beach 67 0 0 0 0 0 0 0 0 0 0 2 3 0 0
Bus 0 77 1 1 0 0 0 1 0 0 0 0 0 5 0
Café \Restaurant 0 0 60 0 2 0 4 0 0 0 0 0 0 2 0
Car 2 0 0 76 0 0 0 0 0 0 0 0 0 2 5
City center 0 0 1 0 68 1 0 0 0 0 0 7 3 0 0
Forest path 0 0 1 0 0 74 0 0 0 0 0 0 4 0 0
Grocery store 0 0 6 0 0 0 68 0 3 0 0 0 0 0 0
Home 1 0 7 0 0 0 1 74 2 1 9 2 0 1 0
Library 0 0 0 0 0 0 0 2 69 0 0 0 1 2 0
Metro station 0 0 0 0 1 0 5 0 0 77 0 0 0 0 1
Office 0 0 0 0 0 0 0 1 0 0 69 0 0 0 0
Park 0 0 0 0 1 0 0 0 2 0 0 47 18 0 1
Residential Area 7 0 2 0 6 3 0 0 0 0 0 18 49 0 0
Train 0 0 0 0 0 0 0 0 2 0 0 2 0 64 1
Tram 1 1 0 1 0 0 0 0 0 0 0 0 0 2 70

Table 3: Confusion matrix obtained with the output combination system on the development set by reaching a 86.2% accuracy. The rows
correspond the true labels and the columns to the predicted labels.

Development dataset
Baseline TDL K=256 TDL K=512 Output Comb.

72.5 85.0 84.8 86.2

Evaluation dataset
Baseline TDL K=256 TDL K=512 Output Comb.

77.2 - - 87.7

Table 2: Accuracy scores obtained by combining the outputs of
different occurrences of nonnegative TDL compared to the base-
line and the individual nonnegative TDL on two different dictionary
sizes.

5. CONCLUSION

We presented the system submitted to the 2016 IEEE AASP
DCASE challenge on acoustic scene classification. We proposed a
feature learning model based on a supervised extension of nonneg-
ative matrix factorization. The resulting supervised model showed
improved performance on the development set compared to its un-
supervised counterpart. For the final submission, we also combined
the outputs of different occurrences of the model in order to learn a
more robust representation. The combination of 4 different realiza-
tions of the nonnegative TDL model reaches a 86.2% accuracy on
the development set.
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