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Emre Çakır, Toni Heittola and Tuomas Virtanen

Tampere Universiy of Technology, 33101 Tampere, Finland

ABSTRACT

In this paper, the method used in our submission for
DCASE2016 challenge task 4 (domestic audio tagging) is de-
scribed. The use of convolutional neural networks (CNN) to la-
bel the audio signals recorded in a domestic (home) environment
is investigated. A relative 23.8% improvement over the Gaussian
mixture model (GMM) baseline method is observed over the devel-
opment dataset for the challenge.

Index Terms— Audio tagging, sound event classification, con-
volutional neural networks

1. INTRODUCTION

The aim of domestic audio tagging is to tag/label an audio recording
from a home environment with one (or more) of the pre-determined
sound sources present in the recording. Smartphones and similar
electronic gadgets with sound recording capabilities significantly
increased the amount of sound recordings from home environments.
Automatic labeling of these recordings can be utilized in many ap-
plication areas, including lifelogging [1] and health activity moni-
toring [2].

2. METHOD

The method can be grouped into two stages: sound representation
and classification. In sound representation stage, the audio wave-
form is transformed into a sequence of spectral domain feature vec-
tors extracted from short time frames. In classification stage, a deep
convolutional neural network (CNN) is trained to obtain source
presence probabilities for each frame. The source presence prob-
abilities for each recording is calculated by taking the average of
the probabilities over the short time frames of the recording.

2.1. Sound representation

The audio waveform is first converted into mono by simply aver-
aging over two channels. Then, it is divided into 40 ms frames
with 50% overlap and then multiplied with a Hamming window.
For each frame, magnitude response is calculated using short time
Fourier transform (STFT) with 1024 points. Then, total energies
in 40 mel bands are calculated over the magnitude response to be
used as sound features xt for each frame t. Finally, each feature is
normalized for zero mean and unit standard deviation. In order to
make use of the temporal structure of the audio recordings, the in-
put to the classifier is represented as blocks of frames X ∈ R40×32,
where a block of 32 frames corresponds to a context window of 640
miliseconds.
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Figure 1: Overview of the utilized CNN method.

2.2. Classification

The overview of the method is illustrated in Figure 1. In order to
obtain the source presence probabilities for each frame, a deep CNN
with three convolutional layers (with frequency max-pooling), three
feedforward layers as hidden layers and one feedforward layer as
output layer is trained. Each convolutional layer has 256 feature
maps with shape (5, 5), therefore convolution applied both in time
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Table 1: Equal error rate (EER) for baseline and CNN methods.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
Sound source CNN CNN CNN CNN CNN Baseline CNN

adult female speech (f) 0.27 0.22 0.15 0.33 0.25 0.29 0.25
adult male speech (m) 0.18 0.12 0.11 0.18 0.19 0.30 0.15
broadband noise (b) 0.00 0.00 0.00 0.00 0.33 0.09 0.07
child speech (c) 0.24 0.14 0.23 0.22 0.24 0.20 0.21
other (o) 0.27 0.26 0.12 0.31 0.33 0.29 0.26
percussive sound (p) 0.31 0.10 0.19 0.24 0.23 0.25 0.21
video game/tv (v) 0.15 0.03 0.03 0.01 0.05 0.07 0.05
Mean EER 0.20 0.13 0.12 0.18 0.23 0.2129 0.1714

and frequency domain. The outputs of each convolutional and feed-
forward hidden layers are followed by batch normalization [3] and
rectified linear unit (ReLU) activation function. Convolutional layer
outputs are passed through max pooling in frequency domain. The
initial 40 input features per frame is downsampled in to a single fea-
ture per feature map over three convolutional layers with pool sizes
5, 4 and 2. Pooling is not applied in time domain in order to obtain
source presence probability for each frame. Therefore the output
of the final convolutional layer is H ∈ R256×32. Dropout [4] with
probability 0.25 is applied for each convolutional and feedforward
hidden layer. Three consecutive feedforward hidden layers with 96
hidden units is placed after the convolutional layers. At each feed-
forward layer, same weights and biases are applied for each of the
32 frame outputs of H. The output feedforward layer has logistic
sigmoid activation function and the outputs from the output layer
are treated as source presence probabilities in each frame. The tar-
get output for each frame t is a binary vector yt ∈ RK where K is
the number of pre-determined sound sources (K = 7 for the chal-
lenge). If the source K is present in a recording, the target output
yt(k) for each frame from the recording will be set as 1 and 0 vice
versa. The estimated source presence probabilities ŷ ∈ RK for
each recording is determined as the average of the source presence
probabilities of Ŷ ∈ RK×T the recording, where T is the number
of frames in the recording. The network is trained with stochastic
gradient descent with cross entropy as loss function and Adam [5]
as the learning rate schedule optimizer. Keras deep learning pack-
age is used in this work [6].

3. EVALUATION

3.1. Dataset and Evaluation Metric

The utilized method is evaluated on CHIME-HOME development
dataset [7], which is the official dataset for DCASE2016 challenge
task 4 [8]. The dataset consists of 4378 chunks of audio recordings
from home environments. Seven sound sources have been deter-
mined for this dataset as child speech (c), adult male speech (m),
adult female speech (f ), video game / TV (v), percussive sounds
(p), broadband noise (b) and other identifiable sounds (o). Each
chunk is annotated with one (or more) of these sound sources. The
official evaluation metric for the challenge is average equal error
rate (EER) for five-fold cross-validation.

3.2. Results

The evaluation results for the CNN method over DCASE2016 chal-
lenge task 4 development dataset is presented in Table 1. For com-
parison, the results for the baseline method [7] is also presented
in the same table. For sound representation, baseline method uses
14 mel frequency cepstral coefficients (MFCC) extracted from 20

ms frames with %50 overlap. As the classifier, baseline method
uses Gaussian mixture modeling (GMM) with 8 Gaussians to model
each sound source.

The utilized CNN method achieves 18.4% relative improve-
ment over the baseline method. Considering the results per sound
source, baseline method and CNN achieve quite similar perfor-
mance, with exception of significantly better performance of CNN
for adult male speech.

4. DISCUSSIONS

The recordings for the challenge have two important properties that
create difficulty for tagging task. First one is the environmental
noise due to the fact that the recordings are obtained from real-life
environments. This makes it necessary for the proposed tagging
method to be noise robust. CNNs are able to extract higher level
features that are invariant to local spectral and temporal variations.
This may explain their improved performance especially on both
male and female speech, where the frequency response can exhibit
small variations between humans. Second property is that multi-
ple sound sources can be present in a single recording at the same
time. Therefore, the classifier should be able to model and rec-
ognize multiple sound sources simultaneously. The multiple fea-
ture maps of the convolutional layers and different subsets of hid-
den units of feedforward layers can help modeling different sound
sources simultaneously, which is another advantage of the utilized
CNN method.

5. REFERENCES

[1] M. Shah, B. Mears, C. Chakrabarti, and A. Spanias, “Lifel-
ogging: Archival and retrieval of continuously recorded au-
dio using wearable devices,” in IEEE International Conference
on Emerging Signal Processing Applications (ESPA). IEEE,
2012, pp. 99–102.

[2] S. Goetze, J. Schroder, S. Gerlach, D. Hollosi, J.-E. Appell, and
F. Wallhoff, “Acoustic monitoring and localization for social
care,” Journal of Computing Science and Engineering, vol. 6,
no. 1, pp. 40–50, 2012.

[3] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
arXiv preprint arXiv:1502.03167, 2015.

[4] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting.” Journal of Machine Learning Re-
search, vol. 15, no. 1, pp. 1929–1958, 2014.

[5] D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[6] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2016.

[7] P. Foster, S. Sigtia, S. Krstulovic, J. Barker, and M. D. Plumb-
ley, “Chime-home: A dataset for sound source recognition in a
domestic environment,” in IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA). IEEE,
2015, pp. 1–5.

[8] “DCASE2016 challenge task 4,” http://www.cs.tut.fi/sgn/arg/
dcase2016/task-audio-tagging, accessed: 2016-07-01.


