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ABSTRACT

This paper investigates several approaches to address the acoustic
scene classification (ASC) task. We start from low-level feature
representation for segmented audio frames and investigate differ-
ent time granularity for feature aggregation. We study the use of
support vector machine (SVM), as a well-known classifier, together
with two popular neural network (NN) architectures, namely mul-
tilayer perceptron (MLP) and convolutional neural network (CNN),
for higher level feature learning and classification. We evaluate the
performance of these approaches on benchmark datasets provided
from the 2013 and 2016 Detection and Classification of Acoustic
Scenes and Events (DCASE) challenges. We observe that a sim-
ple approach exploiting averaged Mel-log-spectrogram, as an ex-
tremely compact feature, and SVM can obtain even better result
than NN-based approaches and comparable performance with the
best systems in the DCASE 2013 challenge.

Index Terms— Acoustic scene classification, Audio features,
Multilayer Perceptron, Convolutional Neural Network, Support
Vector Machine.

1. INTRODUCTION

Acoustic scene classification (ASC), a particular form of audio clas-
sification, consists in using acoustic information (audio signals) to
imply about the context of the recorded environment [1]. Examples
of such environments are bus, office, street, etc... It offers a wide
range of applications in connected home, e.g. expensive video cam-
eras can be replaced by cheap microphones for monitoring daily ac-
tivity, and for smartphones, e.g. they could automatically switch to
silence mode during a meeting or automatically increase the sound
volume in a noisy environment. However, real-life ASC is not a
trivial task as recognising a greater variety of sounds in both indoor
and outdoor environments would require a new set of strategies and
adjustments of existing machine learning techniques to make the
most out of the available data.

While speaker identification [2], speech recognition [3], and
some audio classification tasks in music information retrieval such
as music genre recognition [4, 5] or music instrument recognition
[5] have existed for long time, the real-life ASC task has become
active quite recently in the research community. This can be seen
by the new initiative of DCASE challenges in 2013 and 2016 which
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aims to provide a benchmark for the task. Various techniques have
been proposed to tackle the problem with the use of different acous-
tic features (e.g. cochleogram representation, wavelets, auditory-
motivated representation, features learned by neural networks) and
different classifiers (e.g. Support Vector Machine (SVM), Gaussian
Mixture Model (GMM), Hidden Markov Model (HMM)) [6]. One
of the most popular approaches, known as bag-of-frames (BOF) ap-
proach [7, 8] is used as a baseline in the DCASE challenge, and ex-
ploits the long-term statistical distribution (by GMM) of the short-
term MFCCs. Besides the DCASE challenge, nonnegative matrix
factorization (NMF) was recently exploited for sound event detec-
tion in real life recordings [9]; recurrent neural networks (RNN)
were investigated for polyphonic sound event detection in real life
recordings [10]; and deep neural networks (DNN) have been devel-
oped for sensing acoustic environment [11]. It would be interesting
to note that while DNNs [12, 13] were recently applied with great
success to many different audio, visual and multimedia tasks, it was
less investigated within the DCASE 2013 challenge and one of the
reasons would be the lack of a substantial amount of labeled data
for training.

This paper aims to study the use of well-established low-
level acoustic feature representations and different machine learning
techniques, including DNN-based methods and SVM, for the ASC
task. While most existing approaches extract an acoustic feature
vector for each short-term audio frame, then perform a frame-based
classification based either on BOF over GMMs [7, 8] or simple ma-
jority voting [14, 15, 6], we investigate the use of an another feature
representation, i.e. a single vector for a whole audio scene, aiming
an extremely compact representation that greatly reduces the com-
putation cost for the whole ASC system. We evaluate the use of this
compact feature with SVM and MLP on both DCASE 2013 and
DCASE 2016 datasets and interestingly the performance are more
or less equivalent to a frame-based approach with majority voting
strategy. Furthermore, it results in classification accuracy compara-
ble to the best systems participating in the DCASE 2013 challenge.

The rest of the paper is organized as follows. In Section 2 we
present the general framework which involves different approaches
for feature extraction and classification. Experiment results on
DCASE dataset obtained by our approaches and some state-of-the-
art methods are discussed in Section 3. We finally conclude in Sec-
tion 4.

2. ACOUSTIC SCENE CLASSIFICATION FRAMEWORK

The general workflow of an ASC system is usually divided into two
major steps as shown in Fig. 1. In the first, the feature extrac-
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Figure 1: General workflow of the acoustic scene classification
framework.

tion step, various types of hand-crafted representations have been
considered in the literature such as chroma, pitch, spectrograms,
zero-crossing rate, and linear predictive coding coefficients, etc.,
[1]. Among them, features based on Mel-frequency Cepstrum Coef-
ficients (MFCCs) computed for each short-time frame are arguably
the most common one. More recent DNN-based approaches usually
learn higher level features from these low-level signal representa-
tions [11, 16]. In the classification step, the most popular classifiers
would be SVM or GMM [6]. In the following, we will first de-
scribe the standard Mel-log-spectrogram, as the low-level feature
used in this work, and the proposed compact representation from it
in Section 2.1. We then briefly present some exploited classification
approaches in Section 2.2. The choice of hyperparameters for both
feature extraction and classifiers is discussed in Section 2.3.

2.1. Feature extraction

The time domain audio signal x(n) is first transformed into the
frequency domain by means of the short-term Fourier transform
(STFT) as

+oo
STFT{z}(m,w) = Z z(n)w(n —mL)e 7" (1)

n=—oo

where w(n) is a window function (which is Hanning window in our
implementation), m denotes frame index and L the frame shift. The
spectrogram is then defined as

S(m,w) = | STFT{z}(m,w)|* 2)

In our DNN-based system, we use spectrogram with a logarith-
mic amplitude scale (named log-spectrogram) as the frame input
feature which is computed as

FrLog-spec(m, w) = log(S(m, w)). 3

In our other systems, we first map the spectrogram S(m, w) into the
auditory-motivated Mel frequency scale - denoted by MS(m, w),
then transform it into logarithmic scale as

FMel-log—speC (m7 w) = 10g(MS(m7 w)) (€]

Note that with the CNN-based system, we use the raw log-
spectrogram as the input feature in order to give flexibility for the
CNN to learn a higher level feature representation optimized for the
ASC task. For SVM-based systems we have tested four different
features: spectrogram, log-spectrogram, Mel-log-spectrogram, and
MFCC, and found that the two last ones result in a very similar ASC
performance that is better than the two first ones. As the Mel-log-
spectrogram is simpler to compute than MFCC, we focus more on it
in this paper. Finally, we propose to average the feature vectors for
all frames so as to present a whole audio example by an extremely
compact feature vector whose entries are computed as

1 M

fAvgfmelflogfspec(w) = M Z Flvlelflog—spec(m7w)~ (5)

m=1
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2.2. Classification approaches
2.2.1. Support vector machine

SVM has been known as one of the most popular classifiers for
many different tasks. It was also widely used in the DCASE 2013
challenge [6]. In our work, we used SVM as a benchmark classi-
fier to evaluate the effectiveness of different features, as mentioned
in Section 2.1, as well as to obtain the optimal choice of hyperpa-
rameters (e.g. the window size and the number of Mel-frequency
coefficients) for the considered task.

In our implementation, we train SVMs using a coordinate de-
scent algorithm and following a one-vs-the-rest scheme to perform
classification of multiple classes [17]. We have tested SVM with
linear kernel and Gaussian radial basis function (RBF) kernel and
found that the linear kernel works slightly better than RBF kernel
for the DCASE 2013 dataset.

2.2.2. Multilayer Perceptron

Multilayer Perceptron (MLP) is a fully connected feedforward arti-
ficial neural network architecture that maps sets of input data onto
a set of appropriate outputs. It can be seen as a logistic regres-
sion classifier where the input is first transformed using a non-linear
transformation [18, 19]. A typical set of equations for an MLP is the
following. Layer k computes an output vector h* using the output
h*~1 of the previous layer, starting with the input x = h°,

where b* denotes a vector of offsets (or biases) and W* a matrix
of weights. The function f is called the activation function and it is
applied element-wise. Common options for it are sigmoid function,
hyperbolic tangent, and rectified linear unit (ReLU). The latter, i.e.
f(z) = max(0, ), was used to obtain the results reported in this
document.

The top layer output is used for making a prediction and is com-
bined with the groundtruth label into a loss function. We use soft-
max as the classification layer and the loss function is regularized
with ¢; and /> penalties. This cost function is then optimized us-
ing mini-batch stochastic gradient descent (SGD) with an adaptive
learning rate [20] and dropout is performed between the hidden lay-
ers [21].

2.2.3. Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of neural network
designed to exploit the redundancy and correlation between neigh-
bour units. It has gained great success in different fields such as
image and video recognition, natural language processing, speech
recognition, etc., [13]. This motivates us to investigate the use of
CNN for the ASC task in this work.

We trained CNNs over the log-spectrogram of the signals with a
structure of vertical filters, i.e. the frequency bins can also be inter-
preted as a CNN channel (as in RGB channels for images) instead
of a dimension and the convolution is ran over the time axis. This
type of structure was proposed for music recommendation in Spo-
tify! and is justifiable by the fact that an audio “pattern” detected in
a high-frequency region is usually different from that same pattern
in a low-frequency region. Thus it is desirable to model the vertical

Thttp://benanne.github.io/2014/08/05/spotify-cnns.html
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Method Acoustic feature Classifier Accuracy
Baseline MFCC “bag-of-frames” GMM 55%
Chum et al. [22] Various features at 2 frame sizes HMM 64%
Geiger et al. [14] Diverse features SVM + majority voting 69%
Nam et al. [23] Learned by sparse RBM, event detection and max-pooling | SVM 60%
Nogueira et al. [24] | MFCCs + temporal modulations, event density estimation, | SVM 60%
binaural modelling features, feature selection

Rakotomamonjy Computer vision based features applied to SVM 69%
and Gasso [25] constant-Q spectrogram

Lietal [15] Wavelets, MFCC and others Treebagger + majority voting 72%
Roma et al. [26] MFCC with Recurrence Quantification Analysis SVM 76%
Proposed SVM-A Averaged Mel-log-spectrogram Linear SVM 75%
Proposed SVM-V Frame Mel-log-spectrogram Linear SVM + majority voting 78 %
Proposed MLP Averaged Mel-log-spectrogram MLP with softmax as classification layer 72%
Proposed CNN Log-spectrogram CNN with softmax as classification layer 62%

Table 1: Acoustic scene classification results with DCASE 2013 test dataset (for state-of-the-art approaches) and development dataset (for
our proposed approaches and Li ef al.). Note that other submitting systems resulting in less classification accuracy are not mentioned in the

table.
Method Acoustic feature Classifier Accuracy
Baseline MFCC ”bag-of-frames” GMM 75%
Proposed SVM-A | Averaged Mel-log-spectrogram | Linear SVM 80%
Proposed SVM-V | Frame Mel-log-spectrogram Linear SVM + majority voting 78 %
Proposed MLP Averaged Mel-log-spectrogram MLP with softmax as classification layer | 75%
Proposed CNN Log-spectrogram CNN with softmax as classification layer | 59%

Table 2: Acoustic scene classification results with DCASE 2016 development dataset.

filters to extract more meaningful information from the spectral rep-
resentation. More details about the implemented CNN architecture
can be found in Section 3.1.

2.3. Hyperparameter optimization

It is known that the choice of hyperparameters in each step of the
ASC system or in any machine learning task can significantly af-
fect the final classification result. Such hyperparameters would be
e.g. the window length and hop length in the STFT computation
for feature extraction, the regularization parameter for SVM, the
number of hidden units in an MLP, and the step size for the SGD
algorithm in DNN based methods, etc. The conventional strategy
of tuning these parameters manually would not be feasible as it re-
quires a great number of trials so that all parameters can be opti-
mized together. Thus, in this work we incorporate the Bayesian
optimization [27] method to find these parameters altogether. This
algorithm models the generalization accuracy of a classifier as a
function of the corresponding parameters, and finds the optimal pa-
rameters that maximize the expected accuracy given the observed
dataset. Typically, this kind of algorithm can be considered as a
class of sequential model-based optimization (SMBO) [28].

In our implementation, we use Hyperopt [29], a Python library
for optimizing hyperparameters in machine learning algorithms,
with the Tree of Parzen Estimators (TPE) algorithm [30], that per-
forms cross-validation with the development datasets of DCASE
2013 and DCASE 2016 and finds an optimal set of hyperparame-
ter values. It is interesting to note that the optimal window size for
STFT computation found by the TPE algorithm is quite long, i.e.
about half of a second. This can be explained by the fact that the
acoustic events are more spread in time compared to e.g. speech

which is very localized so as the window length used for STFT is
usually much smaller.

3. EXPERIMENTS

We evaluate the ASC performance of our four implementing sys-
tems with the benchmark DCASE 2013 dataset, which allows
to compare with the state-of-the-art approaches participating in
the challenge, in Section 3.1. We then present the result with
DCASE 2016 dataset in Section 3.2. Our first system (named Pro-
posed SVM-A) uses an extremely compact feature as the Mel-log-
spectrogram coefficients averaged for all frames, and SVM with
a linear kernel as classifier. The second system (named Proposed
SVM-V) performs frame classification by SVM with a linear kernel,
then majority voting in the end. The third system (named Proposed
MLP) takes the compact averaged Mel-log-spectrogram as input,
learns a higher feature representation by MLP, then classifies by
softmax as the last layer of the MLP. The fourth system (named
Proposed CNN) takes log-spectrogram as low-level input feature,
learns higher feature representations by CNN layers, then classifies
by softmax.

3.1. Results with the DCASE 2013 dataset

The DCASE 2013 dataset consists of 30-second audio segments be-
longing to 10 classes, namely: bus, busy street, office, open air mar-
ket, park, quiet street, restaurant, supermarket, tube, tube station.
Each class has 10 segments in the development set and 10 other
examples in the test set [31].

The ASC performance was evaluated in terms of the classifi-
cation accuracy, averaged over all classes, and shown in Table 2.
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Figure 2: Confusion matrix after a 4-fold cross-validation over 78
samples of each class.

Note that as we do not have access to the groundtruth of the test
set, we evaluated our systems averaging with the standard 5-fold
cross-validation on the development set only, while results for most
other approaches in the table are obtained with the test set [6]. Some
hyperparameters for each systems were found by the Bayesian op-
timization method presented in Section 2.3. More detailed settings
for each system are as follows. The window length for the STFT
was set by 0.57 seconds and 0.41 seconds for the SVM-A and SVM-
V system, respectively, the number of Mel-frequency coefficients is
about 1900, the regularization parameter C' in SVM for SVM-A
and SVM-V were 0.98 and 0.62, respectively. MLP had one hidden
layer with 677 units, dropout rate and learning rate for parameter
training was set by 0.08 and 0.011, respectively. CNN had 3 convo-
lutional layers, the number of filters for each layer are 50, 29, and
19, respectively, and the max-pooling ratios between layers are 3,
4, and 3.

As it can be seen, better results are usually obtained by systems
using SVM as classifier. This can be explained by the fact that the
dataset may be not large enough for training DNNs directly. Three
of our proposed systems (SVM-A, SVM-V, and MLP) achieve com-
parable performance with some of the best approaches in the chal-
lenge - as we suppose that there is not much difference between
development set and the test set. Moreover, we achieve higher ac-
curacy than Li ef al. [15] in the same development set. Finally it
is very interesting to note that the proposed feature, which is ex-
tremely compact so as to represent a whole 30-second audio seg-
ment by just a single vector, can be sufficient for the classification
as the SVM-A and MLP obtained 75% and 72% accuracy, respec-
tively.

3.2. Results with the DCASE 2016 dataset

The DCASE 2016 dataset is structured in a similar way as the
DCASE 2013 dataset. However the number of acoustic classes is
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extended to 15 (bus, cafe/restaurant, car, city center, forest path,
grocery store, home, lakeside beach, library, metro station, office,
residential area, train, tram and urban park), and the number of
examples for each class is significantly enlarged to 78 for the devel-
opment set and 78 for the test set.

The results for development set obtained by our four systems
are shown in Table 2.2.3, where the best performance of 80% is
achieved by the SVM-A system with a window length of 0.42 sec-
onds and a hop size of 0.14 seconds for the STFT computation. This
result confirms again the benefit of using the proposed compact fea-
ture representation and the use of a long window for the spectral
transformation. The MLP, which obtains similar performance as
the baseline, had two hidden layers with 66 and 199 units, respec-
tively, SGD was used for parameter training with learning rate of
0.003 and batch size of 100, weights for ¢; and ¢» penalties were
1072 and 10™*, respectively. The CNN, with the same configura-
tion used for the DCASE 2013 dataset, still resulted in the lowest
performance. These four systems will also be tested with the test
set for participating in the DCASE 2016 challenge.

The confusion matrix for SVM-A is shown in Fig. 2, where
rows are groundtruth, columns are the inferred class label, and val-
ues are number of the classified acoustic scene. As it can be seen,
some environments containing a specific type of noise (such as car,
metro station, forest path) are quite easy to recognize, while some
others (such as home, residential area, park) are quite confusing.

4. CONCLUSION

In this article we present several approaches for the ASC task, tar-
geting on fast systems working with very compact feature repre-
sentations so that ASC can be implemented e.g. in smartphones.
We investigate the use of Bayesian optimization for hyperparameter
optimization and find its benefit in e.g. choosing the optimal win-
dow length for STFT or setting DNN parameters. By evaluating on
benchmark DCASE datasets, we find that (1) a long window size
for spectral transformation is more relevant for the environmental
acoustic scenes, and (2) a very compact feature representation by
long-term temporal averaging of Mel-log-spectrogam coefficients
would be sufficient for the task compared to more complicated ap-
proaches. Finally, it is worth noting that DNN approaches have not
reached the same performance of the more classical SVM based
systems so far. Thus future work would be devoted to investigate
transfer learning strategies for DNN based systems where part of
the DNN can be initially learned by a large amount of external au-
dio data.
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