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ABSTRACT

This report describes the 4 submissions for Task 1 (Audio scene
classification) of the DCASE-2016 challenge of the CP-JKU team.
We propose 4 different approaches for Audio Scene Classification
(ASC). First, we propose a novel i-vector extraction scheme for
ASC using both left and right audio channels. Second, we propose a
Deep Convolutional Neural Network (DCNN) architecture trained
on spectrograms of audio excerpts in end-to-end fashion. Third,
we use a calibration transformation to improve the performance of
our binaural i-vector system. Finally, we propose a late-fusion of
our binaural i-vector and the DCNN. We report the performance
of our proposed methods on the provided cross-validation setup for
the DCASE-2016 challenge. Using the late-fusion approach, we
improve the performance of the baseline by 17 percentage point in
accuracy.

Our submissions achieved ranks first and second among 49
submissions in the audio scene classification task of DCASE-2016
challenge.

Index Terms— audio scene classification, i-vectors, convolu-
tional neural networks, deep learning, late fusion

1. INTRODUCTION

In this report, we describe four methods we propose for Task 1
(ASC) in the DCASE-2016 challenge 1. We provide the perfor-
mances of our methods on the openly accessible DCASE-2016
dataset. In our challenge submissions, we follow 4 different ap-
proaches for audio scene classification. First, we propose a binaural
i-vector features extraction scheme using tuned MFCC features for
ASD. Second, we examine a score calibration technique with our
binaural i-vector system. Third, we use a Deep Convolutional Neu-
ral Network (DCNN) trained on spectrograms of audio excerpts in
an end-to-end fashion. Finally, we propose a hybrid system which
benefits from a late-fusion of the binaural i-vector and the DCNN
systems.

The reminder of this report is organized as follows. In the Sec-
tion 2, the i-vector representation is described. Our novel binaural
i-vector extraction scheme is explained in Section 3. The DCNN
approach is detailed in Section 4. The late-fusion of binaural i-
vectors and DCNN is described in Section 5. In Section 6, the re-
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sults of ASC on the provided dataset and cross-validation splits are
presented. Finally, Section 7 concludes this report.

2. I-VECTOR FEATURES

2.1. Theory

I-vector [1] representation have been introduced in the field of
speaker verification. After its revolutionary success in the field, it
was further used with great promise in other areas of audio pro-
cessing such as language recognition [2], music artist and genre
classification [3] and audio scene classification [4].

I-vector features are the product of a Factor Analysis (FA) pro-
cedure applied on the statistical representation of an audio excerpt.
They provide a fixed-length information-rich low-dimensional rep-
resentation for short audio segments. To prepare a statistical repre-
sentation of an audio segment, first a Universal Background Model
(UBM) is trained on the acoustic features of sufficient amount of au-
dio files to capture similarities in the acoustic feature space. Further,
this UBM is adapted to the acoustic features of each audio segment
and the parameters of the adapted model are used as the statisti-
cal representation of the audio segment. Finally, the FA procedure
is applied on the statistical representation of each audio segment
and the factors that have the least changes from one audio segment
to the another are estimated. These estimated factors, known as i-
vectors are then used instead of the audio excerpts for classification
purposes.

The UBM is usually a Gaussian Mixture Model (GMM) trained
on frame-level features such as Mel-Frequency Cepstral Coeffi-
cients (MFCCs). The statistical representation of an audio segment
is then the mean vector of this GMM, which is adapted to the MFCC
features of the audio segment.

To apply the FA, the Gaussian mixture model (GMM) mean
supervector M adapted to an audio from audio scene α can be de-
composed as follows:

M = m+T.y (1)

where m is the GMM mean supervector and T.y is an offset.
The low-dimensional subspace vector y is a latent variable with the
normal prior and the i-vector w is a MAP estimate of y. The matrix
T is learned by using statistical representations of audio excerpts in
the development set via an EM algorithm. More information about
the training procedure of T and i-vector extraction can be found in
[1, 5].

2.2. Our I-vector pipeline

The block-diagram of our i-vector pipeline is shown in Figure 1. As
can be seen, the i-vector pipeline has 3 steps: 1) development, 2)
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Figure 1: Block-diagram of our i-vector pipeline.

training and 3) testing.
During the development step, the UBM is trained on the devel-

opment set and the statistic representation of the development audio
segments are calculated. Then using these statistics, the T matrix is
learned on the statistics of development set’s audio segments.

In the training step, using the i-vector models UBM and T,
i-vectors of the training set are extracted. Using the training set i-
vectors, a Linear Discriminant Analysis (LDA) [6] and a Within-
Class Covariance Normalization (WCCN) [7] model are trained.
LDA and WCCN projections are used for i-vector post-processing.
They improve the i-vector representation and reduce the within-
class variability in i-vector space. Further, LDA-WCCN projected
i-vectors are used to calculate model i-vectors. For each class, the
average of the projected i-vectors in training set is stored as a model
i-vector.

In the testing step, using the models from the previous step and
the MFCCs of the test set we extract test i-vectors. Then, these
i-vectors are projected by LDA and WCCN models trained in the
training step. Finally, each projected test i-vector is scored against
all model i-vectors. The class of the model i-vector with the highest
score is chosen as the predicted class.

2.3. Our I-vector setup

We trained our UBMs with 256 Gaussian components on MFCC
features extracted from audio excerpts. The UBM, T matrix, LDA
and WCCN projections are trained on the training portion of each
cross-validation split. The details of our MFCC features are ex-
plained in the following section. We set the dimensionality of the
i-vectors to 400. To score the projected i-vectors, we used a cosine
scoring as explained in [8].

3. TUNING THE I-VECTOR FEATURES

3.1. MFCCs

In [9] it was shown that it is useful to find a good parametrisation of
MFCCs for a given task. Therefore, the first step is to improve the
performance of MFCCs which we extract with the Matlab toolbox
Voicebox [10].

In order to include all the components that are involved, we
do this after the complete i-vector pipeline is implemented. The
following results are always averaged from a four-fold CV, unless
explicitly mentioned otherwise.

3.1.1. Windowing Scheme

In the first experiment we want to evaluate different observation
window lengths. For this, we place the different observation win-

win=20 ms win=60 ms win=100 ms
acc f1 acc f1 acc f1

MFCC 68.95 61.73 61.84 57.05 60.61 56.53
∆ 61.62 62.53 64.02 65.53 60.68 62.11
∆∆ 61.54 57.83 62.05 60.17 59.49 62.59

Table 1: Results of MFCC observation window tuning. Row
MFCC: 20 MFCCs with 0th coefficient; ∆: 20 MFCC deltas;
∆∆: 20 MFCC double deltas. Gray cells indicate the configura-
tions that were combined for further experiments.

MFCC ∆ ∆∆
w/ 0th w/o 0th w/ 0th w/o 0th w/ 0th w/o 0th

68.95 71.43 61.62 56.34 61.54 50.77

Table 2: The impact of the 0th MFCC. It can be seen that it is
important to include just the 0th MFCC deltas and double deltas,
but not the 0th MFCC itself.

dows symmetrically around the frame that was always fixed on 20
ms. Thus, independent of the actual observation window, we always
end up with exactly the same amount of observations. In Table 1 we
provide some results of different windowing schemes for MFCCs
and their deltas and double deltas. As can be seen, the impact of us-
ing different overlaps is quite severe on the results of the MFCCs. It
turns out that a 20 ms window without overlap gives best accuracy
for MFCCs.

The effect is much smaller on the results of deltas and double
deltas. Nevertheless, we consider it useful to extract deltas and dou-
ble deltas separately with a 60 ms observation window, and combine
them with the 20 ms MFCCs into one single feature vector.

3.1.2. Number of Coefficients

After fixing observation window lengths for MFCCs and deltas and
double deltas, we evaluate the amount of coefficients that is actually
useful in our specific setting. Often, the 0th coefficient is ignored
in order to achieve loudness invariance, which also makes sense for
this task. The results in Table 2 support this intuition, where we can
see that including the 0th coefficient leads to reduced accuracy for
MFCCs.

Nevertheless, it turned out to be quite useful if the delta and
double delta of the 0th MFCC is included in the feature vectors.
In Table 2 it can be seen that the performance of the MFCC deltas
drops from 61.6% to 56.3% accuracy without the 0th MFCC deltas.
The performance of the MFCC double deltas drops from 61.5% to
50.8% without the 0th MFCC double deltas.

In a series of further experiments conducted, the amount of co-
efficients that turned out to be useful was determined, separately for
MFCCs, deltas and double deltas.

3.1.3. Final MFCC configuration

According to the results of the previously conducted experiments,
we suggest to use 23 MFCCs (without 0th MFCC) extracted by ap-
plying a 20 ms observation window without any overlap. 18 MFCC
deltas (including the 0th MFCC delta), and 20 MFCC double deltas
(including the 0th MFCC double delta) are extracted by applying a
60 ms observation window, placed symmetrically around a 20 ms
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fold 1 fold 2 fold 3 fold 4 avg
acc acc acc acc acc

BASE 79.7 64.3 77.1 75.3 74.1
Monaural MFCC 85.52 65.86 79.19 77.05 76.91
Binaural MFCC 85.86 76.55 77.52 83.22 80.79

Table 3: Comparing the performance of our tuned MFCCs with
the provided MFCCs in conjunction with the i-vector procedure.
Row BASE: original MFCC provided by the DCASE organisers;
Monaural MFCC: tuned MFCCs on averaged single-channel; Bin-
aural MFCC: multi-channel tuned MFCCs.

frame. Regardless of the observation window length, we use 30
triangle shaped mel-scaled filters in the range [0-11 kHz].

3.2. Binaural Feature Extraction

Most often, the binaural audio material is down-mixed into a single
monaural representation by simply averaging both channels. This
could be problematic in cases where an important cue is only cap-
tured well in one of the channels, since averaging would then lower
the SNR, and increase the chance that it gets missed by the sys-
tem. The analysis of both channels separately would alleviate this
problem.

Not only do we extract MFCCs from both channels separately,
but also from the averaged monaural representation as well as from
the difference of both channels. All in all, we extract MFCCs from
four different audio sources, resulting in four different feature space
representations per audio file. An experiment where we concate-
nated the MFCCs into a single feature vector did not lead to im-
proved i-vector representations, therefore we opt for a late fusion
approach.

3.3. Late Fusion

The aforementioned separately extracted MFCCs yield four differ-
ent i-vectors which in turn result in four different scores per audio
file. In order to fuse those scores, we suggest to compute the mean
of them. Additionally, we utilise some sort of a bagging approach
for the unseen Test set, where we combine the output of the models
trained on the four CV folds. All in all, we combine 16 scores in
order to yield the classification result of one audio file.

4. DEEP CONVOLUTIONAL NEURAL NETWORKS

In this section we describe the neural network architectures as well
as the optimization strategies used for training our audio scene clas-
sification networks. The specific network architecture used is de-
picted in Table 4. The feature learning part of our model follows
the VGG style networks for object recognition and the classification
part of the network is designed as a global average pooling layer
as in the Network in Network architecture. The input size of our
network is a one channel spectrogram excerpt with size 149× 149.
This means we train the model not on whole sequences but only
on small ”sliding” windows. The spectrograms for this approach
are computed as follows: The audio is sampled at a rate of 22050
samples per second. We compute the Short Time Fourier Transform
(STFT) on 2048 sample windows at a frame rate of 31.25 FPS. Fi-
nally we post-process the STFT with a logarithmic filterbank with
24 bands, logarithmic magnitudes and an allowed passband of 20Hz

Table 4: Model Specifications. BN: Batch Normalization, ReLu:
Rectified Linear Activation Function, CCE: Categorical Cross En-
tropy. For training a constant batch size of 100 samples is used.

Input 1× 149× 149
5× 5 Conv(pad-2, stride-2)-32-BN-ReLu
3× 3 Conv(pad-1, stride-1)-32-BN-ReLu

2× 2 Max-Pooling + Drop-Out(0.3)
3× 3 Conv(pad-1, stride-1)-64-BN-ReLu
3× 3 Conv(pad-1, stride-1)-64-BN-ReLu

2× 2 Max-Pooling + Drop-Out(0.3)
3× 3 Conv(pad-1, stride-1)-128-BN-ReLu
3× 3 Conv(pad-1, stride-1)-128-BN-ReLu
3× 3 Conv(pad-1, stride-1)-128-BN-ReLu
3× 3 Conv(pad-1, stride-1)-128-BN-ReLu

2× 2 Max-Pooling + Drop-Out(0.3)
3× 3 Conv(pad-0, stride-1)-512-BN-ReLu

Drop-Out(0.5)
1× 1 Conv(pad-0, stride-1)-512-BN-ReLu

Drop-Out(0.5)
1× 1 Conv(pad-0, stride-1)-15-BN-ReLu

Global-Average-Pooling
15-way Soft-Max

to 16kHz. The parameters of our models are optimized with mini-
batch stochastic gradient decent and momentum. The mini-batch
size is set to 100 samples. We start training with an initial learning
rate of 0.02 and half it every 5 epochs. The momentum is fixed
at 0.9 throughout the entire training. In addition we apply an L2-
weight decay penalty of 0.0001 on all trainable parameters of our
model.

For classification of unseen samples at test time we proceed as
follows. First we run a sliding window over the entire test sequences
and collect the individual class probabilities for each of the window.
In a second step we average the probabilities of all contributions and
assign the class with maximum average probability.

5. SCORE CALIBRATION AND LATE FUSION

5.1. Score Calibration

To calibrate the binaural i-vector cosine scores, a calibration trans-
formation is used. We use linear logistic regression to train our
transformation models using the scores of the validation set and its
labels. To calibrate the test set scores, we apply the models learned
via validation set scores to transform the test set scores. The trans-
formed scores are used for the final prediction. More information
about our score calibration technique can be found in [11].

5.2. Late fusion

Figure 2 shows a block-diagram of the proposed late-fusion method.
After extracting binaural i-vectors, their final score matrix on the
test set is calculated. In addition, the DCNN is trained and the
soft-max activations on the test set are calculated. Using a linear
logistic regression score calibration similar to what we described
in the previous section, the scores of binaural i-vectors and soft-
max activations of DCNN are combined into a single score matrix.
The projection models are learned using the binaural i-vector scores
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Figure 2: Block-diagram of the late-fusion between binaural i-
vectors and DCNN.

Table 5: Audio scene classification accuracy on the provided
DCASE-2016 test set with provided cross-validation splits. Meth-
ods marked with an asterisk (∗) used the score calibration projection
which was trained on the same set as the test set because of the lack
of validation set in the provided cross-validation splits.

(%) fold1 fold2 fold3 fold4 avg
DCNN 80.69 75.52 77.85 83.90 79.49
BMBI 85.86 76.55 77.52 83.22 80.79
∗ CBMBI 87.93 80.34 81.54 85.62 83.86
∗ LFCBI 94.48 85.17 87.25 92.81 89.93

and soft-max activations of the validation set. The binaural i-vector
scores and soft-max activations of the test set are then fused together
using the models learned on the validation set. This fused score is
used for the final prediction.

6. RESULTS

6.1. Submissions

We provided 4 different submissions based on the methods de-
scribed in the previous sections for the DCASE-2016 challenge.
Our submissions are:

1. DCNN: Deep Convolutional Neural Network (explained in
Section 4)

2. BMBI: Binaural MFCC Boosted I-vectors (explained in Sec-
tion 3)

3. CBMBI: Calibrated Binaural MFCC Boosted I-vectors (ex-
plained in Section 3)

4. LFCBI: Late Fusion of CNN and Binaural I-vectors (ex-
plained in Section 5)

6.2. Performance on the validation set

In Table 5, all accuracies on ASC are provided. We show the perfor-
mance of the different methods on the four validation folds as well
as the average accuracy over all folds.

Additionally, in Table 6, the class-wise accuracy of different
methods are provided. The GMM-MFCC baseline method pro-
vided with the dataset, can be found as Base. Since the available
dataset for DCASE-2016 challenge provides cross-validation splits
with only training and test portions, we use the test set also for the
calibration step (e.g. for computing the calibration projection in the
i-vector pipeline). Similarly, we use the validation sets of each fold
for model selection in the DCNN approach.

For the final submission of the DCASE-2016 challenge, our
models are tested on an unseen test set. On this unseen test set, our
DCNN, BMBI, CBMBI and LFCBI submissions achieved 83.3%,

Table 6: The class-wise accuracy comparing the performance of
different methods for classification of different audio scenes on
DCASE-2016 provided test dataset. The results are averaged for all
the folds. Methods marked with an asterisk (∗) used the score cali-
bration projection which was trained on the same set as the test set
because of the lack of validation set in the provided cross-validation
splits.

(%) Base. DCNN BMBI *CBMBI *LFCBI
Beach 69.3 92.11 78.95 86.84 92.11
Bus 79.6 77.37 79.47 87.11 95.00
Cafe/Rest. 83.2 80.27 62.87 78.72 93.92
Car 87.2 84.61 96.18 96.18 96.18
City center 85.5 83.79 90.19 90.01 88.52
Forest path 81.0 94.05 94.84 96.03 98.81
Grocery store 65.0 93.80 94.86 89.72 95.11
Home 82.1 72.29 59.15 71.01 89.17
Library 50.4 75.14 75.56 78.13 85.93
Metro station 94.7 88.52 83.92 84.10 91.89
Office 98.6 73.18 97.22 90.50 97.22
Park 13.9 58.61 78.33 81.81 86.94
Resident. area 77.7 67.54 63.60 72.06 76.00
Train 33.6 63.45 73.18 72.95 76.74
Tram 85.4 90.66 86.99 84.47 87.88

86.4%, 88.7% and 89.7% accuracy, achieving 14th, 5th, 2nd and 1st

place in the challenge among 49 submissions, respectively.
Results shows that our DCNN and BMBI methods perform sim-

ilarly on average. However, a closer look at Table 6 reveals that the
two methods have different strengths and weaknesses. Looking at
the CBMBI results, we observe that the calibration improves the
performance of BMBI. Since we observed that DCNN and BMBI
methods do not behave similarly on different classes, we expect that
a combination of the two improves the fused system’s performance.
As expected, the LFCBI method outperforms DCNN, BMBI and
CBMBI systems as shown in our results. It suggests that binau-
ral i-vector features and the representation learned by DCCN from
spectrograms contain complementary information about the audio
scenes. As a result, by combining the two we achieve an improve-
ment for the LFCBI system.

7. CONCLUSION

In this report, we proposed 4 different methods for ASC. We used a
deep CNN which uses spectrograms of audio excerpts and is trained
in end-to-end fashion. We further proposed a novel binaural i-vector
extraction scheme using different channels of the audio. Finally,
we proposed a late-fusion of the two methods which improved the
overall and class-wise performance of ASC.
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