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ABSTRACT

In this paper, we investigate sparse convolutive non-negative ma-
trix factorization (sparse-CNMF) for detecting overlapped acoustic
events in single-channel audio, within the experimental framework
of Task 2 of the DCASE’16 challenge. In particular, our main focus
lies on the efficient creation of the dictionary, as well as on the de-
tection scheme associated with the CNMF approach. Specifically,
we propose a shift-invariant dictionary reduction method that out-
performs standard CNMF-based dictionary building. Further, we
develop a novel detection algorithm that combines information from
the CNMF activation matrix and atom-based reconstruction resid-
uals, achieving significant improvement over the conventional ap-
proach based on the activations alone. The resulting system, eval-
uated on the development set of Task 2 of the DCASE’16 Chal-
lenge, also achieves large gains over the traditional NMF baseline
provided by the Challenge organizers.

Index Terms— Convolutive Non-Negative Matrix Factoriza-
tion, Dictionary Building, Overlapped Acoustic Event Detection

1. INTRODUCTION

Acoustic event detection (AED) is a research topic that has been
attracting increasing interest in the literature. Its main goal is the
detection of “active” time intervals for each event present in an au-
dio recording. In its general form, multiple acoustic events may
occur simultaneously, making the task extremely challenging. Ap-
plications of AED include smart home environments, security and
surveillance, and multimedia database retrieval, among others.

In the case of isolated AED, conventional detection and classi-
fication approaches, such as ones based on hidden Markov models
(HMMs) in conjunction with traditional audio features (for example
MFCCs) achieve satisfactory performance [1]. In the case of over-
lapped AED however, such methods need to be modified in order to
allow multiple event detection. For example, in [2], multiple-path
Viterbi decoding is employed to deal with the overlapping scenario.
Other works for overlapping AED include multi-label deep neural
networks [3], temporally-constrained probabilistic component anal-
ysis models, generalized Hough-transform based systems [4], and
non-negative matrix factorization (NMF) [5].

Among these, NMF-based approaches and their variants have
began to attract interest in the field of both isolated and overlapped
AED in recent years. This is due to both their robustness and their
natural ability to detect multiple events occurring simultaneously, as
long as appropriate non-negative and linear representations of them
are available. For example, in [6], a rather small dictionary is built

automatically using sparse-CNMF, and subsequently the activations
produced are used as input for HMM training for each class. Also in
[5], using a large dictionary, NMF activations are directly exploited
to perform detection for each event class.

In this paper, overlapping AED is performed on the Task 2
dataset of the DCASE’16 Challenge, containing 11 office-related
events synthetically mixed in various conditions. The detection sys-
tem proposed is based on the sparse-CNMF framework: Given a
dictionary with spectral patches/atoms for each class, it determines
the activations of each atom over time, thus allowing detection of
overlapping events. The main contributions of the work lie in the
investigation of methods for efficient dictionary building and in the
design of a novel method for the final detection step. In particu-
lar, an efficient dictionary selection method based on shift-invariant
similarity between atoms is proposed, achieving improved results
compared to the standard automatic dictionary building of sparse-
CNMF. Also, in the final detection step, a combination of activa-
tions with the reconstruction errors for each class is proposed. The
results demonstrate remarkable improvement compared to the con-
ventional approach of using activations alone, indicating the com-
plementary information contained in the reconstruction errors.

The rest of the paper is organized as follows: Section 2
overviews the sparse-CNMF framework; Section 3 presents dictio-
nary building for CNMF, including the proposed shift-invariant re-
duction approach; Section 5 covers the CNMF detection approaches
considered; Sections 4 and 6 overview additional system compo-
nents, such as background noise modeling, feature extraction, and
post-processing; Sections 7 and 8 cover the experimental frame-
work and results, and, finally, Section 9 concludes the paper.

2. SPARSE-CNMF FOR AED

The application of sparse-CNMF for overlapped AED is based
on the idea of linear decomposition of events into spectral
patches/atoms. Given the linearity of the features employed, mix-
tures of events will be mainly decomposed into atoms from the
mixed classes, therefore indicating their presence. Non-negative
features with approximate linearity are required: spectrograms and
filterbank energies are typically used for this purpose.

NMF is a linear non-negative approximate factorization of the
observed feature matrix. CNMF [7] is its convolutive extension,
and it is formulated as follows: Given a non-negative matrix V ∈
<≥0,M×N , the goal is to approximate V with the convolutive sum:

V ≈
T−1∑
t=0

Wt ·
t→
H (1)
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where, in our case, Wt ∈ <≥0,M×R is the dictionary matrix at
time step t, H ∈ <≥0,R×N the activation matrix, and T the length
of each dictionary atom. The i-th column of Wt describes the i-th
atom, t time steps after its beginning, and the

t→• operator shifts the
columns of its matrix argument t places to the right. The dictionary
contains R atoms of size M × T each. If we denote with

Λ =

T−1∑
t=0

Wt ·
t→
H ,

the minimization of a suitable error cost function D(V||Λ) results
in iterative estimation of Wt and H [7, 8].

For detection problems, given a dictionary Wt, t ∈ [0, T − 1]
containing patches/atoms for the various classes, the estimated H
provides the activations of each class through time. Although
CNMF produces activation patterns that tend to be sparse, in
detection-related tasks sparsity of H becomes crucial. Sparse-
CNMF, a variant of CNMF, minimizes the following objective:

G(V||Λ) = D(V||Λ) + λ‖H‖1 . (2)

Parameter λ controls the trade-off between sparseness on H and ac-
curate reconstruction of V. Depending on the cost function selected
(KL-divergence, Euclidean distance) different updating equations
result [9, 10].

3. DICTIONARY BUILDING

Dictionary building is a very important step in exemplar-based
methods. Representative atoms from each class must be contained
in the dictionary matrix, capable of reconstructing unseen data. Us-
ing training data of isolated event instances, a sufficient number of
atoms is extracted and stored in the dictionary for each class:

Wt = [W1
t ...W

C
t ], t ∈ [0, T − 1] , (3)

whereC is the number of classes. In the case of CNMF-based meth-
ods, due to increased computational complexity, we need to create
a rather compact dictionary. We present two alternatives next.

3.1. CNMF-based

For each class, the training instances are concatenated to form the
total Vi matrix. Then via sparse-CNMF, both matrices Wi

t and Hi

are computed (as in [10]). Then, Wi
t ∈ <≥0,M×Ri is stored in the

dictionary. The duration T of each atom and their total number Ri

are predefined. By choosing to extract the same number of atoms
Ri for each class, the total number of atoms will be R = C ·Ri.

3.2. Shift-invariant dictionary reduction

Here, we propose an alternative way for dictionary creation that se-
lects a group of atoms from the original training data, instead of
generating new ones as above. For each class, first, a large number
of atoms is extracted from Vi, using a sliding window of duration T
(shifted by one feature frame at a time). Then only Ri of them are
selected by uniformly sampling the space of available atoms. Uni-
form sampling aims at selecting different types of existing atoms
based on a similarity measure, appropriate for CNMF. In our case,
the similarity should be shift-invariant: i.e., two atoms are consid-
ered similar if the Euclidean distance between them or between their
shifted versions is small.

Figure 1: LTSV for background noise detection.

To compare two atoms in a shift-invariant way we first reshape
them to vectors of sizeM ·T in a row-wise manner. In this way, shift
in time in the atoms results in the same shift for their reshaped vec-
tors. Then similarity between atoms is measured as the Euclidean
distance between the magnitudes of the Fourier transforms of their
reshaped vectors, based on the well-known shift-invariant property:

|F{w[t]}| = |F{w[t− to]}| (4)

where F denotes the DTFT transform. The different atoms are
mapped to their Fourier-magnitude vectors, and the latter are sorted
based on their Euclidean distance from their mean. Finally, Ri

atoms are selected by uniformly sampling the sorted list.

4. BACKGROUND NOISE MODELING

In addition to the event modeling by incorporating representative
atoms in the dictionary, background noise modeling is also nec-
essary for a robust detection scheme. With the presence of back-
ground noise atoms in the dictionary, false alarm event activations
are avoided in silent areas. Also, more reliable reconstruction is
possible in active areas, assuming additive noise.

In our approach, following [5] we extract the background atoms
from the observed data during the decoding (on-the-fly). The advan-
tage of this approach is the adaptation of the background dictionary
in the slightly different conditions existing each time.

However, instead of assuming background noise present in the
beginning and end of the observed data as in [5], we attempt to ex-
tract background atoms from various areas of the signal, by employ-
ing the LTSV measure (Long-Term Signal Variability) described in
[11]. This measure has been used successfully for the VAD task and
is based on the fact that background noise usually exhibits smaller
variability through time in its spectrum.

A frame is considered as noise if its LTSV value is lower than
a fixed threshold TL. As before, the shift-invariant dictionary re-
duction method is applied to noise areas occurred, to provide the
background atoms. In Fig. 1 the LTSV values for an observed sig-
nal together with the ground-truth of event activations are shown.

5. DETECTION APPROACHES

As stated earlier, having created the dictionary matrix Wt the
sparse-CNMF method takes as input the data matrix V and outputs
the activation matrix H (following the approach in [9]). The final



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

event detection can occur by exploiting the information in the above
matrices. We present two main approaches:

5.1. Activations only

Most of NMF-based approaches exploit the information in H di-
rectly [5] or indirectly [6]. In our method, activations in H are di-
rectly used for the detection of possible events. In particular, for
each class, the activations are summed across all their atoms, for
each frame, resulting in a new matrix H′ ∈ <≥0,C×N :

H ′(i, t) =
∑

atom∈i

H(atom, t) (5)

where i is the class index (i = 1, ..., C). Then in time frame t
a class is considered active if H ′(i, t) > Tc. Tc is the activation
threshold suitably selected. A post-processing step can also be em-
ployed in order to provide smooth activations. Finally, as activation
refers to atoms, T − 1 also frames after the detected activations are
considered active.

5.2. Incorporation of Reconstruction Residuals

A complementary method of the previous one decides for the acti-
vation of an event not by thresholding the amplitude of H′ but by
measuring the KL-divergence reconstruction error if only the atoms
of that event and of background noise are used. More specifically,
the total reconstruction error of Sparse-CNMF for a time segment
seg = [t1, t2], is D(Vseg||Λseg) and the reconstruction error of
the i-th event is D(Vseg||Λi,bg

seg ), where:

Λi,bg
seg =

T−1∑
t=0

Wi,bg
t ·

t→

Hi,bg
seg (6)

with Hi,bg denoting the part of H containing only the rows corre-
sponding to atoms of the i-th class and of background noise.

We define the Residual Ratio of event-i as the ratio between the
residual of event-i to the total residual using all the events:

RR(i, t) =
D(Vseg||Λi,bg

seg )

D(Vseg||Λseg)
, t ∈ seg (7)

For the RR computation, non-overlapping segments of 1 sec dura-
tion are used. Small Residual Ratio for the i-th event in a given
segment means that large percentage of the reconstruction in that
segment is achieved using only the i-th event (together with back-
ground noise).

In the first approach using activations only, the criterion for
event detection is the amplitude of peaks in activation matrix H.
In the residuals-based approach, the criterion is the accuracy of re-
construction using only atoms and activations of a particular event.
In our final system we combine the above two approaches. The
event-i is considered active in time frame t if both conditions hold:

H ′(i, t) > Tc ∧ RR(i, t) < Tr (8)

Thresholds Tc and Tr are chosen appropriately as explained
later.

6. FEATURES, PARAMETERS AND POST-PROCESSING

Regarding the features, we have experimented with various fea-
ture sets that satisfy non-negativity and approximate linearity: Mel
filterbank energies, Gammatone filterbank energies, DFT spectro-
gram, variable Q-Transform (VQT). The first three, are computed
using frames of 30 msec with 10 msec shift. Regarding the Dictio-
nary building, atoms of 200msec (17 frames) are used, and for the
CNMF-framework the parameter λ was set to 0.7.

Concerning the various thresholds used, the threshold Tc for ac-
tivations in H′ matrix is computed as a percentage of the maximum
peak of H′. The threshold for residuals TR is computed as a per-
centage of the minimum of RR matrix for a given segment. All the
parameters were optimized using the Dev set (in our case it stands
as Test set also).

Finally as a post-processing in the detection step, 1d-dilation is
performed in each row of the H′ matrix in order to broaden the in-
tervals of high-peaked activations produced. In the case of the com-
bined method, dilation is performed before the combination with
the residuals approach. In the end, T −1 frames after each detected
activation are also considered active.

7. EXPERIMENTAL FRAMEWORK

7.1. Database

We performed our experiments on the DCASE’16 Challenge
database designed for Task 2: “Sound event detection in synthetic
audio”. This database contains recordings for 11 office-related
audio events: clearing throat, coughing, door knock, door slam,
drawer, human laughter, keyboard, keys, page turning, phone ring-
ing and speech. The database consists of 3 parts: The Training set
comprises of 20 isolated recordings for each event. The Dev set
contains 18 recordings of synthetic mixtures with varying SNR lev-
els, event density conditions and polyphony. Test set has similar
structure with Dev set but is used only for the Challenge evaluation
(ground-truth not available).

7.2. Setups

In this paper, we report experiments on the Dev set. However, due
to its particularity of containing the same event instances with the
Training set, we use two different setups.

The first setup is identical to the default setup of Task 2. One
dictionary is built using all the isolated training data and then
sparse-CNMF based detection is performed on each of the 18 Dev
recordings.

In the second setup, in order to test on unseen instances, we
perform a 18-leave-one-out experiment. 18 dictionaries are built,
one for each testing recording in Dev, by using each time all the
training instances except of those contained in the given recording.

7.3. Metrics

Various metrics are considered in the Task 2, both event-based and
frame-based. We will focus on the main metric of the challenge, the
frame-based Total Error Rate (ER), defined as ER = (I + D +
S)/N . I denotes insertions, D deletions, S substitutions and N is
the total number of ground-truth events for a given frame. ER is
computed in frames of 1 sec. Frame-based Fscore is also reported
in our results.
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(a)

(b)

Figure 2: Example of the event activations through time in (a)
Ground-Truth (b) our system’s output

8. RESULTS

Moving to the results, in Table 1 the results for the Challenge NMF-
baseline and our system are compared using the default setup#1.
Regarding the NMF-based baseline, it builds the dictionary using
the training data, and extracts 20 atoms per class. Atoms have
single-frame duration and are extracted from the variable-Q trans-
form spectrogram (VQT, 60bins, 10 msec step). A post-processing
stage applies median filtering to the output and allows up to 5 con-
current events.

Our system uses 200 atoms per event, of duration 200 msec
each. The dictionary creation was performed employing our Shift-
Invariant reduction method. It is obvious that our system (Acti-
vations only) clearly outperforms the baseline achieving a 69.6%
relative improvement in terms of ER metric. It seems that the ex-
traction of more atoms per class, combined with the incorporation
of temporal structure in them under the CNMF-framework lead to
major improvement.

In Table 2 we show our experimentation regarding different fea-
ture sets that can be used together with variations in their dimen-
sionality and in dictionary size (#atoms per class). The results were
conducted using the leave-one-out setup#2. We can observe that
Mel filterbank energies achieve the best performance among the dif-
ferent feature sets. It seems that Mel filterbank is more appropriate
for this group of events. Also from the results of the Mel features,
we can see that increasing the dimensionality of the feature vector
and the dictionary size can lead to slight improvements.

Comparison of different Dictionary building methods is shown
in Table 3 using the setup#2. Also the same detection system was
used in all cases (Mel-100-100). Our approach performs better than
the standard CNMF-based dictionary building. This provides indi-
cation that accurate representation of event atoms (instead of ap-
proximate) is beneficial for the detection task, as long as we have a
way to select the appropriate atoms.

In Table 4 the results of our systems using the two different de-
tection approaches are depicted. We can observe that the system

Table 1: Performance of Baseline and our system for the detection
task in the setup #1 experiment.

Setup #1
Method Fscore ER

NMF-Baseline 0.42 0.79
Activations only 0.87 0.24

Table 2: Performance of different feature sets and dictionary sizes
for the detection task in the setup #2 experiment.

Setup #2
Features - dim.- size ER

VQT - 545 - 200 0.88
Gamma - 150 - 200 0.86

Mel - 150 - 200 0.79
Mel - 150 - 100 0.82
Mel - 100 - 100 0.83
DFT - 545 - 100 0.83

Table 3: Performance of different dictionary building methods for
the detection task in the setup #2 experiment.

Setup #2
Method ER

Sparse-CNMF 0.89
Shift-Inv. Reduction 0.82

Table 4: Performance of our systems for the detection task in the
setup #2 experiment.

Setup #2
Method Fscore ER

Activations only 0.43 0.79
Activations & Residuals 0.55 0.63

using the combination of activations and reconstruction residuals
achieves a 20% relative error reduction compared to the system us-
ing activations only. This highlights the complementarity of the two
approaches. The improvement is mainly due to the elimination of
false activations exhibiting large peaks in H′ matrix but having also
large Residual Ratio.

Finally in Fig. 2 the output of our system is shown together
with the ground-truth for a particular audio recording of Dev set.

9. CONCLUSIONS

We presented a sparse-CNMF based system for overlapped audio
event detection, employing an efficient dictionary building method
and a novel detection approach. Special focus was also given to
the background noise modeling and on the experimentation with
different possible feature sets for the CNMF framework. Results
presented for the Task 2 of DCASE16 challenge are promising and
quite better than that of NMF-based baseline provided.

In future work, better ways to combine activation-based and
residual-based approaches will be investigated. Also the perfor-
mance of our system will be tested in more datasets relevant to
overlapped AED.
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