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ABSTRACT

The report describes a sound event detection system submitted to
DCASE 2016 (detection and classification of acoustic scenes and
events) challenge. In this work a convolutional neural network is
used for detecting and classifying polyphonic events in a long tem-
poral context of filter bank acoustic features. Given a small amount
of training resources, data augmentation has been explored. On de-
velopment data set the system achieves an average 7.7% relative er-
ror rate improvement and 55.1% relative F-measure improvement.
However, it is still unable to detect short events with limited train-
ing data. Out of 17 challenge participants, this system was ranked
top 12th in terms of segment error rate (0.98%) and 3rd in terms of
F-measure (44.1%) on the evaluation data set.

Index Terms— acoustic event detection, convolutional neural
networks, data augmentation

1. INTRODUCTION

The DCASE 2016 sound event detection in real life audio task con-
sists in annotating the audio data containing 18 polyphonic acoustic
events recorded in several acoustic conditions.

The challenge provided a limited amount of data per each
acoustic event and the rules did not allow to use additional resources
for training. To cope with this problem, our initial idea was to
rely on various transformations of the training data including au-
dio mixing and speed perturbation. Another problem with this task
is that training of frame-based classifiers is difficult, because only
segment-level annotations were available and many frames con-
tained no relevant information for the tagged class.

The system described in this report is based on a convolutional
neural network (CNN) model, which demonstrated promising re-
sults in various machine learning tasks, including acoustic event
detection [1, 2, 3]. CNNs can benefit from a long context of fea-
tures, but usually require sufficient amount of data for parameter
estimation. The latter problem can be in part handled by artificial
data augmentation. The code and the experimental setup described
in this report are available on github1.

2. SYSTEM DESCRIPTION

The system is built on top of python DCASE baseline distributed
by the organizers and described in [4]. Feature extraction is done
with python librosa2 package and neural network modeling is based

1https://github.com/gorinars/dcase16-cnn
2https://github.com/librosa/librosa

on keras3 library. The remainder of this section describes the core
parts of the system.

2.1. Feature extraction

The baseline MFCC acoustic features are replaced by log Mel filter
banks. The original 44 kHz audios are down-sampled to 16 kHz.
Then, 60 filter bank features are extracted within 25 ms frames with
15 ms overlap. Even for stacked context of features it was found
to be useful to add first and second derivatives computed within a 9
frame window.

2.2. Data augmentation

Challenge rules did not allow to use additional data for training or
mixing. At the same time for some classes less than 20 seconds
of data were provided. Consequently, an attempt was made to en-
large the data set by applying two types of transformations: speed
perturbation (or time stretching) and block mixing [5].

Speed perturbation is done using sox4 “speed” command,
which in turn adjusts both speed and pitch. The train data set of
each fold was enlarged using 0.8, 0.9, 1.1 and 1.2 speed perturbation
rates. The reference event time makers were adjusted accordingly.

We also tried to increase polyphony by applying block mixing.
To do so, 5 second segments, each containing at least one event were
randomly mixed with a slight random volume perturbation. No im-
provement was observed with block mixing in the preliminary ex-
periment, so for the reported experiments and the final submission
only speed perturbation was applied.

2.3. Neural network architecture

A single CNN is trained to handle both home and residential area
recordings. However, in decoding time only the relevant subset of
events is taken into account per each scene. In addition, a binary
scene feature is added in both training and decoding.

The architecture of CNN is similar to the one described in [3].
It consists of the following:

• The network takes 60 frames of log Mel filter bank acoustic
features with derivatives as an input (i.e., 0.6 seconds).

• Gaussian noise with 0.01 standard deviation is added during
training

• First convolution layer consists of 80 filters (6x60 size, 1x1
stride) followed by max-pooling (4x3 pool shape, 1x3 stride)

3https://github.com/fchollet/keras
4http://sox.sourceforge.net/
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• Second convolution layer has 80 filters (13 size, 11 stride) fol-
lowed by max-pooling (13 pool size, 13 pool stride)

• Third and fourth layers are fully-connected with 1024 units per
layer

• The output layer has sigmoid activation functions (1 unit per
event with a separate unit for silence), which allows to classify
overlapping events.

For all layers rectified linear units (ReLU) are used. To reduce
over-fitting, dropout with rate 0.2 is applied to the first convolution
layer and with rate 0.5 on the two fully-connected layers. L2 weight
regularization is also used for all layers with a small 0.0001 penalty.

The network is trained using Adam algorithm [6] with learn-
ing rate 0.001 optimizing cross-entropy. The training ends when
validation loss does not improve for 10 epochs. For data augmenta-
tion experiments the network is fine-tuned with stochastic gradient
descent using only the original training data and not updating pa-
rameters of the first convolution layer. The parameters were tuned
monitoring development data loss, although due to time constraints
only a few architectures were compared.

2.4. Event detection

The decoder was not sufficiently modified compared to the base-
line system. Event probabilities are extracted from CNN sigmoid
activations. Then, a sliding smoothing window of 1 second length
is applied. If the class is spotted within this window in more than
20 frames, the event is considered as detected in the central frame.
In fact, in preliminary tests using no smoothing at all demonstrated
similar results.

3. EXPERIMENTAL RESULTS

All experiments are conducted on 4-fold cross-validation set pro-
vided by the organizers. For the final submission, the system was
trained on all annotated data.

Table 1 summarizes the average performance of the baseline
system described in [4] compared to CNN trained without and with
data augmentation.

Table 1: Segment-based overall metrics for baseline GMM sys-
tem and the proposed model trained without (CNN) and with
(CNN+DA) data augmentation

ER, % F1, %
base CNN CNN+DA base CNN CNN+DA

home 0.97 0.94 0.92 15.4 20.4 24.6
residential 0.86 0.75 0.75 31.5 52.1 51.5
average 0.91 0.84 0.84 23.4 36.3 38.1

The model achieves 7.7% relative improvement of the segment
error rate (ER) and 55.1% relative improvement of F-measure (F1).
Data augmentation only allowed to slightly improve the average F-
score.

Looking at the results per each event (Tables 2 and 3) we can
conclude that the model significantly better classifies long events
with larger amount of training data available (washing dishes, wa-
ter tap running, bird singing, and car passing), while similar to the
baseline it is unable to recognize short events with limited training
data available.

Table 2: Segment-based F-score per class for home recordings.
GMM baseline and the proposed model trained without (CNN) and
with (CNN+DA) data augmentation

event F1, %
base CNN CNN+DA

(object) rustling 3.2 0.0 0.0
(object) snapping 0.0 0.0 0.0
cupboard 0.0 0.0 0.0
cutlery 0.0 0.0 0.0
dishes 0.0 2.6 2.6
drawer 0.0 0.0 0.0
glass jingling 0.0 0.0 0.0
object impact 1.8 2.5 0.0
people walking 0.0 0.0 0.0
washing dishes 3.7 28.6 28.9
water tap running 15.9 58.3 65.8

Table 3: Segment-based F-score per class, residential area. GMM
baseline and the proposed model trained without (CNN) and with
(CNN+DA) data augmentation

event F1, %
base CNN CNN+DA

(object) banging 0.0 0.0 0.0
bird singing 30.1 62.8 61.2
car passing by 54.5 64.4 68.3
children shouting 0.0 0.0 0.0
people speaking 25.0 14.0 5.0
people walking 1.7 0.0 0.0
wind blowing 11.8 2.1 1.8

4. CONCLUSION

A CNN based system submitted for DCASE 2016 challenge was
described. Although many successful applications of CNN are re-
ported in the literature for sound event detection, we could achieve
only a small improvement compared to the baseline GMM-based
system in terms of the challenge evaluation measure (segment error
rate). Interestingly, other DCASE challenge participants also could
not demonstrate significant error rate improvements. Overall, out of
17 participants our system was 12th in terms of ER and 3rd in terms
of F-measure. Similar to our work, other systems had difficulties in
detecting short events.

Neural network based models generally require more data for
training. Disappointingly, not much improvement came from artifi-
cial data augmentation either. We plan to investigate whether using
additional data can improve the results submitted for the challenge.
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