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ABSTRACT

This paper presents a sound event detection system basedlon m
frequency cepstral coefficients and a non-parametricifilasSys-

tem performance is tested using the training and developmen
datasets corresponding to the second task of the DCASE 26 ¢
lenge. Results indicate that the most relevant spectratrimdtion

for event detection is below 8000 Hz and that the generalesbép
the spectral envelope is much more relevant than its finélsleta

Index Terms— Sound event detection, spectral envelope, cep-
stral analysis

1. INTRODUCTION

Automatic sound event detection is a rather recent resdsscie
and any advance related to it may impact a variety of apjpicat
fields [1]. Probably, the most intuitive approach to sounscde-
tion for event detection consists in parameterising itscspen.
Specifically, mel-frequency cepstral coefficients (MFC@wvide
a low-dimensional procedure for coding the shape of thetsgec
envelope that has been successfully applied to speechsginge
tasks such as speaker verification [2] or laryngeal patlyodtegec-
tion [3]. In fact, this type of coefficients has also been agpto
sound event detection [1, 4, 5]. Yet, it is known that sound@e-
tion not only works in spectral domain, but also in tempohain
[6]. Such temporal dimension may be included in sound event d
tection by different means such as calculating MFCC devigat
training hidden Markov models for classification, or both4L

When it comes to detecting several sound events happen-

ing simultaneously, proposed approaches include decdtigpos
of sound spectra in several components prior to classificd],
adding complexity to the classification stage to allow forltipie
event detection [1], or combinations of both [8].

In our view, a priori decomposition of sound spectra in sev-
eral components is problematic, since the addition of tgaals in
temporal domain does not necessarily result in the additidheir
power spectra. For this reason, we approach the problenréstiyi
coding the spectrum of the recorded signal using MFCC. Time te
poral dimension of the event detection problem is acknogéeicby
calculating the first derivatives of MFCCs and by splittihg sound
signal into frames before processing. In this work, we cotrege
on the design of the datasets and the signal analysis; comstby)
no assumption is made regarding the distribution of theutaied
signal parameters. For this reason, a non-parametricifodads
chosen.

This work has been partially financed by the Spanish Govenime
through project grant number TEC2012-38630-C04-01.
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Figure 1: Power spectral density (PSD) of synthetic noiseényated
from a 6.5 second-length fragment using the Welch methadH&j
reference purposes, ‘A Weighting’ and ‘CCIRR 468-4’ cur{&s]

have also been plotted.

2. MATERIALS

Audio recordings were provided by IRCCYNcole Centrale de
Nantes. They correspond to 11 sound event types (see Tab.
1) recorded in a quiet environment, using a condenser micro-
phone (AT8035, manufactured by Audio-Technica) connetted

a portable recorder (H4n, manufactured by Zoom). Audioagn
were sampled at 44.1kHz and recorded with a single microphon
(monophonic recordings). The microphone pass band ramges f

40 to 20,000 Hz.

20 events from each type were recorded, hence resulting 220
recordings each one containing a single sound event. Ffaval
tion purposes, an additional dataset was built using théqurs 220
recordings as a basis. This consists of 18 recordings witim2te
durations. These were obtained by combining some of thdesing
event recordings into a single file and adding noise recoilech
independent session. Overlapping between events waseallow
50% of the resulting files. Noise was approximately grey .(Fig
1) and several levels of event-to-background ratio (EBR)eved-
lowed: -6, 0 and 6 dB.

3. SIGNAL ANALYSIS

3.1. Inspection of sound spectra

Fig. 2 depicts the estimated spectra, averaged for eaclofyent.
While some types have distinct spectral envelope shapeh, asi
key drops or phone ringing, there are others for which thetsale
envelopes are similar. This is especially the case of cotlgbat
clearing, laughter and speech, since all these soundsateqad as
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Type# | Type name | Explanation
1 Clearthroat | Throat clearing
2 Cough
3 Doorslam | Door slam
4 Drawer Drawer sliding
5 Keyboard | Typewritting
6 Keys Keys dropping on a des
7 Knock Knocking on a door
8 Laughter
9 Pageturn | Paper page turning
10 Phone Phone ringing
11 Speech French speech
12 Back Background noise

Table 1: Event types. Recordings corresponding to tHé fye
(back were obtaining by cutting out event-free segments from the
validation dataset.

outputs of the same acoustic filter: the human vocal traath $act
suggests that parameterisation schemes based only oratstim
the average spectral envelope are likely to have poor pedioces.
From another point of view, all spectra exhibit a decay at fre
qguencies above 13 kHz. However, the power spectral density o
background noiseb@cktype in Fig. 2) grows from 13 to 22 kHz,
as also shown in Fig. 1. As a consequence, the EBR above 13 kHz
is a decreasing function of frequency.

3.2. Parameter computation

Considering aforementioned characteristics of the tasgpeind
event spectra, we propose a parameterisation scheme hasee o
calculation of mel-frequency cepstral coefficients (MFL@ad
their derivatives. The proposed signal processing schempises
the next stages:

1. Windowing Each digital audio signal is first normalised to
yield a unit power discrete-time signal[n], composed by
N samples® = 0...N — 1). This signal is segmented in
speech frames of length equal fosamples through multi-
plication by a framing windoww [n]:

zp[n] =z [n+p(L—lo)]-wn] @

wherel, is the number of overlapping samples between con-
secutive frames angis the frame index.

2. Fourier transform From each speech frame, the short-term
Discrete Fourier Transform (stDFT) is computed as:

2wnk

L—1 )
(k)= ap[n] - e/ Norr @
n=0

whereNprr is the number of points of the sStDFNprr >
Landk=0... Nppr — 1.

The absolute frequency value that corresponds to each stDFT
coefficient is:

; if k < MpET
fﬁ{f Bl 45 o ©

fs - NDFT if k> ND2FT

being fs the sampling frequency.
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3. Mel distortion After the computation of the stDFT, the next

step is frequency distortion in spectral domain. This is enad
according to [11, chap. 2]:

F = sgn [fi] - 2595 - log, <1 + |7J;k0|) @

. Mel spectrum smoothing his is done by integrating the en-

ergy present in the spectrum of the processed speech frame
along a set of pre-defined mel-frequency bands. These are
M equal-width bands linearly distributed betwefe and
fumel - with 50% overlap between consecutive bands. Each
one is characterised by its centre mel frequency and it$widt
Thesi'" centre frequency is

mel mel mel mel 1
el _ _ L 5
¢, MIN T+ ( MAX MIN) M1 (5)
wherei = 1...M. Thus, each band covers the range

et = mfll, %1, yielding bandwidth

mel _ gmel
Afmel —92. ]\JA]\); n 1I\HN (6)

Integration along bands is commonly done using triangular
windows [12, chap. 6]. Therefore, the result for each band

mel mel
k — Jc,i—1
Afmel
2

L@ =4 2 —1{1%, ()] ()

v rmel c mel
feer;

where the normalising term; ensures that for each band
the mean energy is computed without any bias:

A= >

mel mel
foelers

f};nel __ fmel N
C,i—
—1
Aflnel

8)

. Transformation into cepstral domaiithe last step in MFCC

computation is transformation of the afore-mentioned

smoothed mel spectrum into cepstral domain. Such trans-
formation can be realised by calculating the inverse DFT of
the logarithm of the power spectrum [13]. Being the speech
signal real-valued, it may be assumed that its spectrum is
symmetric. Furthermore, iX,, (0) is defined to be equal to

1, which simply means adding a constant value to the signal
in temporal domain, then the power cepstrum of the mel-
wrapped and spectrally smoothed signal can be written as:

. om
Xp [q] = 2J\l+1 Zz-—]\/] IOg (X (Z)) elam+1d

- T log( ()) cos(kyj_q%) )

The coefficients,, [¢] are called MFCC and they may be
computed using an expression that resembles the discrete
cosine transform (DCT) of the logarithm of the smoothed
mel-wrapped spectrum of the speech framdn]. In fact,

the original MFCC formulation [14] directly uses the sec-
ond form of the DCT (DCT-2) [15, chap. 8]. Herein, (9) is
preferred because it has a simpler relation to the DFT.
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Figure 2: Average power spectral density for each type ofievBpectra have been averaged for all 20 recordings belgrigieach type.

Estimation has been carried out using the Welch method [9].

6. Derivation Derivation of MFCC to obtaiMMFCC is per-
formed using a eighth-order discrete differentiating filte

AX, g = +

Xl = 3% [a) + 3 X2ld]

- X [Q] + Xp1 [Q] - % p+2 [‘I]

1

£ g Xala) = { Al (10

4. CLASSIFICATION

The feature vectors describing sound frames that resuit tiee
previous signal analysis scheme have probability distidbg with
shapes that significantly differ between distinct sounchesceFor
instance, the distributions for tlepeectandkeysclasses illustrated
in Fig. 3 present different shapes. From another point ofvie
is known that for classification problems, the choice of siféer is
much less relevant than the availability of as many data asipie
[16]. For these reasons, a non-parametric discriminantozgh
based on the k-nearest-neighbours (kNN) rule [17] was telec

Principal Component #2

Figure 3: Distribution of frames belonging speech(left) andkeys
(right) classes in the feature space defined by the threepfiirst
cipal components of the feature vectors including 15 MFCG+ 1
AMFCC parameters.

5. POST-PROCESSING

Let NV; (p) be the number of neighbours belonging to event tiype
assigned to thg'™ sound frame by the kNN rule, therefore:

D> Ni(p)=k (11)
t=1

Then, a straightforward application of this classificatiole would
lead to assigning event ty(¥ (p) to thep'™ sound frame such that:
T (p) = arg max N (p) 12)

However, the following procedure was used in order to smooth
the effect of outlier frames:
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1. Low-pass filtering of the number of neighbours by comput-
ing the local average using a sliding Hamming window

XA g Ni(p+ Ap) - wn [Ap]
Eilp:f]:’l wn [Ap]

. Discarding events for which the filtered number of neigh-
bours is below a certain threshold:

N (p) = {Nt (#)

N: (p) (13)

if Nt (p) 2 Nthres

. 1...
otherwise

11
(14)

0 b=

the threshold; otherwise the frame is considered to belong t
thebackclass:

{

. Discarding events that are not detected in a minimum num-
ber of consecutive frames:

(p) = {T(p) if YR, T(p+Ap)=2P+1
(16)

12 otherwise
After classification of every sound frame, decision on thefin
times of sound events is made based on the next rules:

A.

if max; Ny (p) > 0
otherwise

arg maxi N, (p)
12

t=1...12

T (p)
(15)

,7"_

An event is considered to be formed by a set of consecutive
frames corresponding to the same valug& dp). In such a case,
the event type is defined bf/'(p) and its starting and ending
times are defined by the central time instants of the firstasd |
frames of the set, respectively.

. Two events of the same type are merged into a single one if th
time difference between the starting time of the second ode a
the ending time of the first one is less than a certain threshol
Anvin. In this case, the resulting event duration is from the
starting time of the first original event to the ending timetoe
second one.

. A mimimum event duratioff v is defined such that if the
duration of a given event is less tHEtn then its starting point

is advanced and its ending point delayed so that its duration

equaIsTMIN .

6. EXPERIMENTS & RESULTS

The previously described system, with the parameter vaues
marised in Tab. 2, was used as a reference and applied totte de
tion of sound events in the additional dataset describeedtion
2. Results for 20 MFCC + 2AAMFCC are summarised on the left
column of Tab.

System performance can be significantly improved by buijidin
a training dataset with features as similar as possibledsetiof the
validation dataset. In this case, if noise sequences ¢attdoom
the additional dataset are added to the 220 training revgsdivith
the same levels of SNR as in the validation dataset, namel§ -6
and 6 dB, and the resulting 660 sound signals are used aswhe ne
training dataset then the system performance can be segmifjc
improved, as shown in the middle column of Tab. 3.

. Assigning an event type to each frame, in case the smoothed
number of neighbours corresponding to some class is above
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Param. Value Explanation
L 1324 30 ms frames withyfs = 44.1 kHz
lo 331 25% overlap between adjacent frames
w [n] Hamming window
NprT 1324 Same as frame length
el 62.63 mel| Corresponding t¢ = 40 Hz
mel 3582 mel | Corresponding t¢ = 13 kHz
M 40
k 25
P 5 200 ms filter length
Nthres 6.75
P 1 Corresponding to 25 ms
ATvIN 2s
TN 300 ms

Table 2: Parameter values for the reference system.

Performance | Refer. Training 8000 Hz
Measure | System | with noise | 15 MFCC
Segment based

F-score &) | 9.61% 70.06% 67.65%

Error Rate ER) | 95.69% | 47.06% 49.73%
Event based

F-score| 6.07 % 62.99% 60.22 %

Error Rate| 105.9% | 66.16% 69.02%

Table 3: Event detection results.

Results summarised in the right column of Tab. 3 indicate
that the most relevant information is concentrated belo@08dz
(fmel, = 2840) and that it can be described using only 15 MFCCs
plus their derivatives without any big loss of performan&eing
this a simpler configuration, a more robust performance ksetex-
pected.

Last, it should be noted that the post-processing rule Bignpl
itly allows event overlapping. In fact, detection perforoe for the
recordings in the validation set with overlapped eventsirislar
to the overall performancef{ = 65.84%, ER = 50.30% for the
segment-based evaluatior} (= 59.18%, FR = 68.69% for the
event-based evaluation).

7. CONCLUSIONS

The reported results in sound event detection, obtainet) #ssys-
tem based on MFCC parameters and a hon-parametric claksifier
to two main conclusions. In the first place, system perforcean
is critically affected by a proper selection of the soundordings
used for training the system. In this particular case, uséugprd-
ings with noise levels similar to those in the testing setdilmsved

a significant improvement in performance. Secondly, thedggc-
tral information for sound event detection seems to be curated
below 8000 Hz. Additionally, the fact that 15 MFCCs provide a
most the same performance as 20 MFCCs reveals that theiassent
information is in the overall shape of the spectral envelape not
in its fine details, be them either narrow peaks or narroweyall
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