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ABSTRACT

This paper presents a sound event detection system based on mel-
frequency cepstral coefficients and a non-parametric classifier. Sys-
tem performance is tested using the training and development
datasets corresponding to the second task of the DCASE 2016 chal-
lenge. Results indicate that the most relevant spectral information
for event detection is below 8000 Hz and that the general shape of
the spectral envelope is much more relevant than its fine details.

Index Terms— Sound event detection, spectral envelope, cep-
stral analysis

1. INTRODUCTION

Automatic sound event detection is a rather recent researchissue
and any advance related to it may impact a variety of application
fields [1]. Probably, the most intuitive approach to sound descrip-
tion for event detection consists in parameterising its spectrum.
Specifically, mel-frequency cepstral coefficients (MFCC) provide
a low-dimensional procedure for coding the shape of the spectral
envelope that has been successfully applied to speech processing
tasks such as speaker verification [2] or laryngeal pathology detec-
tion [3]. In fact, this type of coefficients has also been applied to
sound event detection [1, 4, 5]. Yet, it is known that sound percep-
tion not only works in spectral domain, but also in temporal domain
[6]. Such temporal dimension may be included in sound event de-
tection by different means such as calculating MFCC derivatives,
training hidden Markov models for classification, or both [1, 4].

When it comes to detecting several sound events happen-
ing simultaneously, proposed approaches include decomposition
of sound spectra in several components prior to classification [7],
adding complexity to the classification stage to allow for multiple
event detection [1], or combinations of both [8].

In our view, a priori decomposition of sound spectra in sev-
eral components is problematic, since the addition of two signals in
temporal domain does not necessarily result in the additionof their
power spectra. For this reason, we approach the problem by directly
coding the spectrum of the recorded signal using MFCC. The tem-
poral dimension of the event detection problem is acknowledged by
calculating the first derivatives of MFCCs and by splitting the sound
signal into frames before processing. In this work, we concentrate
on the design of the datasets and the signal analysis; consequently
no assumption is made regarding the distribution of the calculated
signal parameters. For this reason, a non-parametric classifier is
chosen.

This work has been partially financed by the Spanish Government,
through project grant number TEC2012-38630-C04-01.
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Figure 1: Power spectral density (PSD) of synthetic noise, estimated
from a 6.5 second-length fragment using the Welch method [9]. For
reference purposes, ‘A Weighting’ and ‘CCIRR 468-4’ curves[10]
have also been plotted.

2. MATERIALS

Audio recordings were provided by IRCCYN,École Centrale de
Nantes. They correspond to 11 sound event types (see Tab.
1) recorded in a quiet environment, using a condenser micro-
phone (AT8035, manufactured by Audio-Technica) connectedto
a portable recorder (H4n, manufactured by Zoom). Audio signals
were sampled at 44.1kHz and recorded with a single microphone
(monophonic recordings). The microphone pass band ranges from
40 to 20,000 Hz.

20 events from each type were recorded, hence resulting 220
recordings each one containing a single sound event. For valida-
tion purposes, an additional dataset was built using the previous 220
recordings as a basis. This consists of 18 recordings with 2 minute
durations. These were obtained by combining some of the single-
event recordings into a single file and adding noise recordedin an
independent session. Overlapping between events was allowed in
50% of the resulting files. Noise was approximately grey (Fig.
1) and several levels of event-to-background ratio (EBR) were al-
lowed: -6, 0 and 6 dB.

3. SIGNAL ANALYSIS

3.1. Inspection of sound spectra

Fig. 2 depicts the estimated spectra, averaged for each typeof event.
While some types have distinct spectral envelope shapes, such as
key drops or phone ringing, there are others for which the spectral
envelopes are similar. This is especially the case of cough,throat
clearing, laughter and speech, since all these sounds are produced as
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Type# Type name Explanation
1 Clearthroat Throat clearing
2 Cough
3 Doorslam Door slam
4 Drawer Drawer sliding
5 Keyboard Typewritting
6 Keys Keys dropping on a desk
7 Knock Knocking on a door
8 Laughter
9 Pageturn Paper page turning
10 Phone Phone ringing
11 Speech French speech
12 Back Background noise

Table 1: Event types. Recordings corresponding to the 12th type
(back) were obtaining by cutting out event-free segments from the
validation dataset.

outputs of the same acoustic filter: the human vocal tract. Such fact
suggests that parameterisation schemes based only on estimating
the average spectral envelope are likely to have poor performances.

From another point of view, all spectra exhibit a decay at fre-
quencies above 13 kHz. However, the power spectral density of
background noise (back type in Fig. 2) grows from 13 to 22 kHz,
as also shown in Fig. 1. As a consequence, the EBR above 13 kHz
is a decreasing function of frequency.

3.2. Parameter computation

Considering aforementioned characteristics of the targetsound
event spectra, we propose a parameterisation scheme based on the
calculation of mel-frequency cepstral coefficients (MFCCs) and
their derivatives. The proposed signal processing scheme comprises
the next stages:

1. Windowing: Each digital audio signal is first normalised to
yield a unit power discrete-time signalx [n], composed by
N samples (n = 0 . . . N − 1). This signal is segmented in
speech frames of length equal toL samples through multi-
plication by a framing windoww [n]:

xp [n] = x [n+ p (L− l0)] · w [n] (1)

wherel0 is the number of overlapping samples between con-
secutive frames andp is the frame index.

2. Fourier transform: From each speech frame, the short-term
Discrete Fourier Transform (stDFT) is computed as:

Xp (k) =

L−1
∑

n=0

xp [n] · e
−j 2πnk

NDFT (2)

whereNDFT is the number of points of the stDFT,NDFT ≥
L andk = 0 . . . NDFT − 1.

The absolute frequency value that corresponds to each stDFT
coefficient is:

fk =

{

fs ·
k

NDFT
if k ≤ NDFT

2

fs ·
k−NDFT

NDFT
if k > NDFT

2

(3)

beingfs the sampling frequency.

3. Mel distortion: After the computation of the stDFT, the next
step is frequency distortion in spectral domain. This is made
according to [11, chap. 2]:

f
mel
k = sgn [fk] · 2595 · log10

(

1 +
|fk|

700

)

(4)

4. Mel spectrum smoothing: This is done by integrating the en-
ergy present in the spectrum of the processed speech frame
along a set of pre-defined mel-frequency bands. These are
M equal-width bands linearly distributed betweenfmel

MIN and
fmel
MAX with 50% overlap between consecutive bands. Each

one is characterised by its centre mel frequency and its width.
Theith centre frequency is

f
mel
c,i = f

mel
MIN +

(

f
mel
MAX − f

mel
MIN

)

·
i

M + 1
(5)

where i = 1 . . .M . Thus, each band covers the range
Imel
i =

[

fmel
c,i−1, f

mel
c,i+1

]

, yielding bandwidth

∆f
mel = 2 ·

fmel
MAX − fmel

MIN

M + 1
(6)

Integration along bands is commonly done using triangular
windows [12, chap. 6]. Therefore, the result for each band
is:

X̃p (i) =
1

Ai

·
∑

fmel
k

∈Imel
i

∣

∣

∣

∣

∣

fmel
k − fmel

c,i−1

∆fmel

2

− 1

∣

∣

∣

∣

∣

|Xp (k)| (7)

where the normalising termAi ensures that for each band
the mean energy is computed without any bias:

Ai =
∑

fmel
k

∈Imel
i

∣

∣

∣

∣

∣

fmel
k − fmel

c,i−1

∆fmel

2

− 1

∣

∣

∣

∣

∣

(8)

5. Transformation into cepstral domain: The last step in MFCC
computation is transformation of the afore-mentioned
smoothed mel spectrum into cepstral domain. Such trans-
formation can be realised by calculating the inverse DFT of
the logarithm of the power spectrum [13]. Being the speech
signal real-valued, it may be assumed that its spectrum is
symmetric. Furthermore, if̃Xp (0) is defined to be equal to
1, which simply means adding a constant value to the signal
in temporal domain, then the power cepstrum of the mel-
wrapped and spectrally smoothed signal can be written as:

Xp [q] = 1

2M+1

∑M

i=−M log
(

X̃p (i)
)

e
j 2πi

2M+1
q

= 1

M+ 1
2

∑M

i=1
log

(

X̃p (i)
)

cos
(

πiq

M+ 1
2

)

(9)

The coefficientsXp [q] are called MFCC and they may be
computed using an expression that resembles the discrete
cosine transform (DCT) of the logarithm of the smoothed
mel-wrapped spectrum of the speech framexp [n]. In fact,
the original MFCC formulation [14] directly uses the sec-
ond form of the DCT (DCT-2) [15, chap. 8]. Herein, (9) is
preferred because it has a simpler relation to the DFT.
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Figure 2: Average power spectral density for each type of event. Spectra have been averaged for all 20 recordings belonging to each type.
Estimation has been carried out using the Welch method [9].

6. Derivation: Derivation of MFCC to obtain∆MFCC is per-
formed using a eighth-order discrete differentiating filter:

∆Xp [q] =
1

4
Xp−4 [q]−

1

3
Xp−3 [q] +

1

2
Xp−2 [q]

− Xp−1 [q] + Xp+1 [q]−
1

2
Xp+2 [q]

+
1

3
Xp−3 [q]−

1

4
Xp+4 [q] (10)

4. CLASSIFICATION

The feature vectors describing sound frames that result from the
previous signal analysis scheme have probability distributions with
shapes that significantly differ between distinct sound events. For
instance, the distributions for thespeechandkeysclasses illustrated
in Fig. 3 present different shapes. From another point of view, it
is known that for classification problems, the choice of classifier is
much less relevant than the availability of as many data as possible
[16]. For these reasons, a non-parametric discriminant approach
based on the k-nearest-neighbours (kNN) rule [17] was selected.
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Figure 3: Distribution of frames belonging tospeech(left) andkeys
(right) classes in the feature space defined by the three firstprin-
cipal components of the feature vectors including 15 MFCC + 15
∆MFCC parameters.

5. POST-PROCESSING

Let Nt (p) be the number of neighbours belonging to event typet

assigned to thepth sound frame by the kNN rule, therefore:

12
∑

t=1

Nt (p) = k (11)

Then, a straightforward application of this classificationrule would
lead to assigning event typeT (p) to thepth sound frame such that:

T (p) = argmax
t

Nt (p) (12)

However, the following procedure was used in order to smooth
the effect of outlier frames:
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1. Low-pass filtering of the number of neighbours by comput-
ing the local average using a sliding Hamming windowwh:

Ñt (p) =

∑P1

∆p=−P1
Nt (p+∆p) · wh [∆p]

∑P1

∆p=−P1
wh [∆p]

(13)

2. Discarding events for which the filtered number of neigh-
bours is below a certain threshold:

N̂t (p) =

{

Ñt (p) if Ñt (p) ≥ Nthres

0 otherwise
, t = 1 . . . 11

(14)

3. Assigning an event type to each frame, in case the smoothed
number of neighbours corresponding to some class is above
the threshold; otherwise the frame is considered to belong to
thebackclass:

T (p) =

{

argmaxt N̂t (p) if maxt N̂t (p) > 0
12 otherwise

t = 1 . . . 12 (15)

4. Discarding events that are not detected in a minimum num-
ber of consecutive frames:

T̃ (p) =

{

T (p) if
∑P2

∆p=−P2
T (p+∆p) = 2P2 + 1

12 otherwise
(16)

After classification of every sound frame, decision on the on/off
times of sound events is made based on the next rules:

A. An event is considered to be formed by a set of consecutive
frames corresponding to the same value ofT̃ (p). In such a case,
the event type is defined bỹT (p) and its starting and ending
times are defined by the central time instants of the first and last
frames of the set, respectively.

B. Two events of the same type are merged into a single one if the
time difference between the starting time of the second one and
the ending time of the first one is less than a certain threshold
∆τMIN. In this case, the resulting event duration is from the
starting time of the first original event to the ending time ofthe
second one.

C. A mimimum event durationTMIN is defined such that if the
duration of a given event is less thatTMIN then its starting point
is advanced and its ending point delayed so that its duration
equalsTMIN.

6. EXPERIMENTS & RESULTS

The previously described system, with the parameter valuessum-
marised in Tab. 2, was used as a reference and applied to the detec-
tion of sound events in the additional dataset described in section
2. Results for 20 MFCC + 20∆MFCC are summarised on the left
column of Tab.

System performance can be significantly improved by building
a training dataset with features as similar as possible to those of the
validation dataset. In this case, if noise sequences extracted from
the additional dataset are added to the 220 training recordings with
the same levels of SNR as in the validation dataset, namely -6, 0
and 6 dB, and the resulting 660 sound signals are used as the new
training dataset then the system performance can be significantly
improved, as shown in the middle column of Tab. 3.

Param. Value Explanation
L 1324 30 ms frames withfs = 44.1 kHz
l0 331 25% overlap between adjacent frames

ω [n] Hamming window
NDFT 1324 Same as frame length
fmel
MIN 62.63 mel Corresponding tof = 40 Hz

fmel
MAX 3582 mel Corresponding tof = 13 kHz
M 40
k 25
P1 5 200 ms filter length

Nthres 6.75
P2 1 Corresponding to 25 ms

∆τMIN 2 s
TMIN 300 ms

Table 2: Parameter values for the reference system.

Performance Refer. Training 8000 Hz
Measure System with noise 15 MFCC

Segment based
F-score (F ) 9.61% 70.06% 67.65%

Error Rate (ER) 95.69% 47.06% 49.73%
Event based

F-score 6.07 % 62.99% 60.22 %
Error Rate 105.9 % 66.16% 69.02%

Table 3: Event detection results.

Results summarised in the right column of Tab. 3 indicate
that the most relevant information is concentrated below 8000 Hz
(fmel

MAX = 2840) and that it can be described using only 15 MFCCs
plus their derivatives without any big loss of performance.Being
this a simpler configuration, a more robust performance is tobe ex-
pected.

Last, it should be noted that the post-processing rule B implic-
itly allows event overlapping. In fact, detection performance for the
recordings in the validation set with overlapped events is similar
to the overall performance (F = 65.84%, ER = 50.30% for the
segment-based evaluation; (F = 59.18%, ER = 68.69% for the
event-based evaluation).

7. CONCLUSIONS

The reported results in sound event detection, obtained using a sys-
tem based on MFCC parameters and a non-parametric classifierlead
to two main conclusions. In the first place, system performance
is critically affected by a proper selection of the sound recordings
used for training the system. In this particular case, usingrecord-
ings with noise levels similar to those in the testing set hasallowed
a significant improvement in performance. Secondly, the keyspec-
tral information for sound event detection seems to be concentrated
below 8000 Hz. Additionally, the fact that 15 MFCCs provide al-
most the same performance as 20 MFCCs reveals that the essential
information is in the overall shape of the spectral envelopeand not
in its fine details, be them either narrow peaks or narrow valleys.
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Olalla, and C. Muñoz-Mulas, “Detection of speech dynamics
by neuromorphic units,” inInternat. Work-Conf. Interplay be-
tween Natural and Artificial Comput. Springer, 2009, pp.
67–78.

[7] O. Dikmen and A. Mesaros, “Sound event detection us-
ing non-negative dictionaries learned from annotated overlap-
ping events,” inIEEE Workshop Appl. Signal Process. Audio
Acoust. IEEE, 2013, pp. 1–4.

[8] T. Heittola, A. Mesaros, T. Virtanen, and A. Eronen, “Sound
event detection in multisource environments using source sep-
aration,” in Workshop on Machine Listening in Multisource
Environm., 2011, pp. 36–40.

[9] J. G. Proakis and D. G. Manolakis,Digital Signal Processing:
Principles Algorithms and Applications. Macmillan Publish-
ing Company, 1988.

[10] P. Skirrow, “Audio measurements and test equipment,” in Au-
dio Engineers Reference Book, M. Talbot-Smith, Ed. Focal
Press, Oxford, 1999, ch. 3.6.

[11] X. D. Huang, A. Acero, and H. W. Hon,Spoken Language
Processing: A Guide to Theory, Algorithm, and System De-
velopment. Prentice-Hall, 2001.

[12] J. R. Deller, J. G. Proakis, and J. H. L. Hansen,Discrete-Time
Processing of Speech Signals. Macmillan Publishing Com-
pany, 1993.

[13] D. G. Childers, D. P. Skinner, and R. C. Kemerait, “The cep-
strum: A guide to processing,”Proc. IEEE, vol. 65, no. 10,
pp. 1428–1443, 1977.

[14] S. B. Davis and P. Mermelstein, “Comparison of parametric
representations for monosyllabic word recognition in continu-
ously spoken sentences,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-28, no. 4, pp. 357–366, 1980.

[15] A. V. Oppenheim, R. W. Schafer, and J. R. Buck,Discrete-
Time Signal Processing. Prentice-Hall, 1989, vol. 2.

[16] M. Banko and E. Brill, “Scaling to very very large corpora
for natural language disambiguation,” inProc. 39th Annual
Meeting Assoc. Computational Linguistics, 2001, pp. 26–33.

[17] S. Theodoridis and K. Koutroumbas,Pattern Recognition.
Academic Press - Elsevier, 2003.


