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ABSTRACT

In this study, we propose a new method of polyphonic sound event
detection based on a Bidirectional Long Short-Term Memory Hid-
den Markov Model hybrid system (BLSTM-HMM). We extend the
hybrid model of neural network and HMM, which achieved state-
of-the-art performance in the field of speech recognition, to the
multi-label classification problem. This extension provides an ex-
plicit duration model for output labels, unlike the straightforward
application of BLSTM-RNN. We compare the performance of our
proposed method to conventional methods such as non-negative
matrix factorization (NMF) and standard BLSTM-RNN, using the
DCASE2016 task 2 dataset. Our proposed method outperformed
conventional approaches in both monophonic and polyphonic tasks,
and finally achieved an average F1 score of 76.63 % (error rate of
51.11 %) on the event-based evaluation, and an average Fl-score
87.16 % (error rate of 25.91 %) on the segment-based evaluation.

Index Terms— Polyphonic Sound Event Detection, Bidirec-
tional Long Short-Term Memory, Hidden Markov Model, multi-
label classification

1. INTRODUCTION

Sounds include important information for various applications such
as life-log, environmental context understanding, and monitoring
system. To realize these applications, It is necessary to extract in-
ternal information automatically from not only speech and music,
which have been studied for long time, but also other various types
of sounds.

Recently, studies related to sound event detection (SED) at-
tracted much interest to aim for understanding various sounds. The
objective of SED systems is to identify the beginning and end of
sound events and to identify and label these sounds. SED is di-
vided into two scenarios, monophonic and polyphonic. Mono-
phonic sound event detection is under the restricted condition that
the number of simultaneous active events is only one. On the other
hand, in polyphonic sound event detection, the number of simulta-
neous active events is unknown. We can say that polyphonic SED
is a more realistic task than monophonic SED because in real situa-
tions, it is more likely that several sound events may happen simul-
taneously, or multiple sound events are overlapped.

The most typical approach to SED is to use a Hidden Markov
Model (HMM), where the emission probability distribution is repre-
sented by Gaussian Mixture Models (GMM-HMM), with Mel Fre-
quency Cepstral Coefficients (MFCCs) as features [1, 2]. Another
approach is to utilize Non-negative Matrix Factorization (NMF)

[3, 4, 5]. In the NMF approaches, a dictionary of basis vectors
is learned by decomposing the spectrum of each single sound event
into the product of a basis matrix and an activation matrix, then
combining the basis matrices. The activation matrix at test time is
estimated using the basis vector dictionary. More recently, meth-
ods based on neural networks have achieved good performance
for sound event classification and detection using acoustic signals
[7, 8,9, 10, 11, 12]. In the first two of these studies [7, 8], the
network was trained to be able to deal with a multi-label classifica-
tion problem for polyphonic sound event detection. Although these
networks provide good performance, they do not have an explicit
duration model for the output label sequence, and the actual output
needs to be smoothed with careful thresholding to achieve the best
performance.

In this paper, we propose a new polyphonic sound event de-
tection method based on a hybrid system of bidirectional long
short-term memory recurrent neural network and HMM (BLSTM-
HMM). The proposed hybrid system is inspired by the BLSTM-
HMM hybrid system used in speech recognition [13, 14, 15, 16],
where the output duration is controlled by an HMM on top of a
BLSTM network. We extend the hybrid system to polyphonic SED,
and more generally to the multi-label classification problem. Our
approach allows the smoothing of the frame-wise outputs without
post-processing and does not require thresholding.

The rest of this paper is organized as follows: Section 2 presents
various types of recurrent neural networks and the concept of long
short term memory. Section 3 describes our proposed method in de-
tail. Section 4 describes the design of our experiment and evaluates
the performance of the proposed method and conventional methods.
Finally, we conclude this paper and discuss future work in Section
5.

2. RECURRENT NEURAL NETWORKS

2.1. Recurrent Neural Network

A Recurrent Neural Network (RNN) is a layered neural network
which has a feedback structure. The structure of a simple RNN
is shown in Fig. 1. In comparison to feed-forward layered neural
networks, RNNs can propagate prior time information forward to
the current time, enabling them to understand context information
in a sequence of feature vectors. In other words, the hidden layer of
an RNN serves as a memory function.

An RNN can be described mathematically as follows. Let us
denote a sequence of feature vectors as {X1, X2, ..., X7 }. An RNN
with a hidden layer output vector h: and output layer one y; are
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Figure 1: Recurrent Neural Network

calculated as follows:

h; = f(Wixt+ W, hi—1+ b1), (D
yi = g(Wah; +b2), 2

where W; and b; represent the input weight matrix and bias vector
of the i-th layer, respectively, W,. represents a recurrent weight
matrix, and f and g represent activation functions of the hidden
layer and output layer, respectively.

2.2. Bidirectional Recurrent Neural Network

A Bidirectional Recurrent Neural Network (BRNN) [13, 17] is a
layered neural network which not only has feedback from the pre-
vious time period, but also from the following time period. The
structure of a BRNN is shown in Fig. 2. The hidden layer which
connects to the following time period is called the forward layer,
while the layer which connects to the previous time period is called
the backward layer. Compared with conventional RNNs, BRNNs
can propagate information not only from the past but also from the
future, and therefore have the ability to understand and exploit the
full context in an input sequence.

2.3. Long Short-Term Memory RNNs

One major problem with RNNss is that they cannot learn context in-
formation over long stretches of time because of the so-called van-
ishing gradient problem [19]. One effective solution to this problem
is to use Long Short-Term Memory (LSTM) architectures [20, 21].
LSTM architectures prevent vanishing gradient issues and allow the
memorization of long term context information. As illustrated in
Fig. 3, LSTM layers are characterized by a memory cell s; , and
three gates: 1) an input gate gl , 2) a forget gate gf’, and 3) an
output gate g°. Each gate g* has a value between 0 and 1. The
value 0 means that the gate is closed, while the value 1 means that
the gate is open. In an LSTM layer, the hidden layer output h; in
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Figure 2: Bidirectional Recurrent Neural Network
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Figure 3: Long Short-Term Memory

Eq. 1 is replaced by the following equations:

gl = o(Wixi+Wlhi 1 +si1), 3)
g = o(Wisy +Wlhiq +si1), (C))
st = g Of(Wixe + W,he1 +b1)+gf @seo1, (5)
g2 = o(W%: +WPC%h; 1 +si1), (6)
hy = g ®tanh(s,), @)

where W and W,. denote input weight matrices and recurrent
weight matrices, respectively, subscripts I, F', and O represent the
input, forget, and output gates, respectively, ® represents point-wise
multiplication, and o represents a logistic sigmoid function.

2.4. Projection Layer

Use of a projection layer is a technique which reduces the compu-
tational complexity of deep recurrent network structures, which al-
lows the creation of very deep LSTM networks [14, 15]. The archi-
tecture of an LSTM-RNN with a projection layer (LSTMP-RNN) is
shown in Fig. 4. The projection layer, which is a linear transforma-
tion layer, is inserted after an LSTM layer, and the projection layer
outputs feedback to the LSTM layer. With the insertion of a projec-
tion layer, the hidden layer output h;_; in Egs. 3-6 is replaced with
p:—1 and the following equation is added:

pt = Wrhy, (8)

where W represents a projection weight matrix, and p; represents

a projection layer output.

3. PROPOSED METHOD

3.1. Data generation

There are only 20 clean samples per sound event in the DCASE2016
task 2 training dataset. Since this is not enough data to train a deeply
structured recurrent neural network, we synthetically generated our
own training data from the provided data. The training data gen-
eration procedure is as follows: 1) generate a silence signal of a
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Figure 4: Long Short-Term Memory Recurrent Neural Network
with Projection Layer



Detection and Classification of Acoustic Scenes and Events 2016

predetermined length, 2) randomly select a sound event from the
training dataset, 3) add the selected sound event to the generated
silence signal at a predetermined location, 4) repeat Steps 2 and 3
a predetermined number of time, 5) add a background noise sig-
nal extracted from the development set at a predetermined signal to
noise ratio (SNR).

In this data generation operation, there are four hyper-
parameters; signal length, number of events in a signal, number
of overlaps, and SNR between sound events and background noise.
We set signal length to 4 seconds, number of events to a value from
3 to 5, number of overlaps to a value from 1 to 5, and SNR to a value
from -9 dB to 9 dB. We then generated 100,000 training samples of
4 seconds length, hence, about 111 hours of training data.

3.2. Feature extraction

First, we modified the amplitude of the input sound signals to ad-
just for the differences in recording conditions by normalizing the
signals using the maximum amplitude of the input sound signals.
Second, the input signal was divided into 25 ms windows with a 40
% overlap, and we calculated a log filterbank feature for each win-
dow in 100 Mel bands (more bands than usual since high frequency
components are more important than low frequency ones for SED).
Finally, we conducted cepstral mean normalization (CMN) for each
piece of training data. Feature vectors were calculated using HTK
[22].

3.3. Model

We extended the hybrid HMM/neural network model in order to
handle a multi-label classification problem. To do this, we built a
three state left-to-right HMM with a non-active state for each sound
event. The structure of our HMM is shown in Fig. 5, where n = 0,
n = b and n = 4 represent the initial state, final state, and non-
active state, respectively. Notice that the non-active state represents
not only the case where there is no active event, but also the case
where other events are active. Therefore, the non-active state of
each sound event HMM has a different meaning from the silence.
In this study, we fix all transition probabilities to a constant value of
0.5.

Using Bayes’ theorem, HMM state emission probability
P(x¢|s¢,t = m) can be approximated as follows

P(sc,t = nlxt)P(xz)

P(x¢|sc,t =n) =

P(sc,t =n)
9
_ P(scr = n|x¢) ©
T P(ser=mn)

Final statc

Figure 5: Hidden Markov Model of each sound event
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Figure 6: Proposed model structure

where ¢ € {1,2,...C} represents the index of sound events, and
n € {1,2,..., N} represents the index of HMM states, hence,
P(sc,: = n|x;) satisfies the sum-to-one condition of }  P(s¢,; =
n|x¢) = 1. In the BLSTM-HMM Hybrid model, HMM state poste-
rior P(sc,+ = n|x¢) is calculated using a BLSTM-RNN. The struc-
ture of the network is shown in Fig. 6. This network has three hid-
den layers which consist of an LSTM layer, a projection layer, and
the number of output layer nodes is C' x N. All values of the poste-
rior P(sc,+|x¢) have the sum-to-one condition for each sound event
c at frame t, it is obtained by the following softmax operations

exp(ac,n,t)

27127’21 exp(ac,n’,t)

P(sce = nlx) = ) (10)

where a represents the activation of output layer node. The network
was optimized using back-propagation through time (BPTT) with
Stochastic Gradient Descent (SGD) and dropout under the cross-
entropy for multi-class multi-label objective function

E®)=> "> yemiIn(P(sc; =nlxs)),  (11)

c=1n=1t=1

where © represents the set of network parameters, and yc,n ¢ is the
HMM state label obtained from the maximum likelihood path at
frame ¢. (Note that this is not the same as the multi-class objective
function in conventional DNN-HMM.) HMM state prior P(sc,:)
is calculated by counting the number of occurrence of each HMM
state. However, in this study, because our synthetic training data
does not represent the actual sound event occurrences, the prior ob-
tained from occurrences of HMM states has to be made less sensi-
tive. Therefore, we smoothed P(s. ) as follows

P(sct) = P(sct)”, 12)

where « is a smoothing coefficient. In this study, we set o« = 0.01.
Finally, we calculated the HMM state emission probability using
Eq. 9 and obtained the maximum likelihood path using the Viterbi
algorithm.

4. EXPERIMENTS

4.1. Experimental condition

We evaluated our proposed method by using the DCASE2016 task 2
dataset [18, 6]. In this study, we randomly selected 5 samples per
event from training data, and generated 18 samples which have 120
sec length for test data just like DCASE2016 task 2 development
set using selected samples. (Note that these samples are not used
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Table 1: Experimental conditions

Sampling rate 44,100 Hz
Frame size 25 ms
Shift size 10 ms
Learning rate 0.0005
Initial scale 0.001
Gradient clipping norm 5
Batch size 64
Time steps 400
Epoch 20

for training.) Evaluation is conducted by using two metrics: event-
based evaluation, and segment-based evaluation, where an F1-score
(F1) and an error rate (ER) are utilized as evaluation criteria (see
[24] for more details).

We built our proposed model using following procedure: 1) di-
vide an active event into three segments with equal intervals in order
to assign left-to-right HMM state labels, 2) train the BLSTM-RNN
using these HMM state labels as supervised data, 3) calculate the
maximum likelihood path with the Viterbi algorithm using RNN
output posterior, 4) train the BLSTM-RNN by using the obtained
maximum likelihood path as supervised data, 5) repeat step 3 and
step 4. In this study, when calculating the maximum likelihood path,
we fixed the alignment of non-active states, i.e., we just aligned
event active HMM states. When training networks, we checked the
error for test data every epoch, and if the error became bigger than in
previous epoch, we restored the parameters of previous epoch and
re-train the network with a halved learning rate. All networks were
trained using the open source toolkit TensorFlow [23] with a single
GPU (Nvidia Titan X) . Details of the experimental conditions are
shown in Table 1.

4.2. Comparison with conventional methods

To confirm the performance of our proposed method, we compared
it with the following four methods: 1) NMF (DCASE2016 task2
baseline), 2) BLSTM-RNN, 3) BLSTM-RNN with median filter
smoothing, 4) BLSTM-RNN disregarding a few missing frames.
BLSTM-RNN has the same network structure as BLSTM-HMM
with the exception that the number of output layer nodes which
have a sigmoid function as an activation function corresponds to
the number of sound events C'. Each node conducts a binary classi-
fication, hence, each output node y. is between 0 and 1. We set the
threshold as 0.5, i.e., y. > 0.5 represents sound event c being ac-
tive, and y. < 0.5 non-active. For post-processing, we applied two
methods, median filtering, and disregarding a few missing frames.
In this time, we set the degree of median filtering to 9, and the num-
ber of disregarded frames to 10.

Experimental results are shown in Table 2. From the results,
we can see that the methods based on BLSTM are significantly bet-
ter than NMF-based method in polyphonic sound event detection.
As regards post-processing, in study [8], the authors reported that

Table 2: Experimental results

Event-base Segment-base

F1[%] | ER[%] | FI[%] | ER [%]

NMEF (Baseline) 14.67 | 66547 | 35.95 183.41
BLSTM 66.54 85.30 87.04 25.91

BLSTM (w/ median) 75.80 53.16 87.73 24.24
BLSTM (w/ disregard) | 75.89 52.48 87.04 2591
BLSTM-HMM 76.63 51.11 87.16 25.91
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Table 3: Effect of background noise

Event-base Segment-base
EBR [dB] | F1[%] | ER [%] | F1 [%] | ER [%]
-6 73.66 57.95 86.01 27.95
0 76.68 51.28 87.38 25.91
6 79.63 44.10 88.07 23.86

they did not require post-processing since RNN outputs have al-
ready been smoothed. However, we confirmed that post-processing
is still effective, especially for event-based evaluation. In addition,
although RNN outputs are smoother than the outputs of neural net-
works without a recurrent structure, there is still room for improve-
ment by smoothing RNN outputs. Our proposed method achieved
the best performance of all of the methods for event-based evalua-
tion, which supports this assertion.

4.3. Analysis

In this section, we focus on the factors which influenced the per-
formance of our proposed method. The first factor is SNR between
background noise and sound events. The performance of our pro-
posed method for each SNR condition is shown in Table 3. From
these results, there are clear differences in performance between
the different SNR conditions. This is because the loud background
noise caused more insertion errors, especially small loudness events
such as doorslam and drawer.

The second factor is the difference in performance between the
monophonic and polyphonic tasks. The performance of our pro-
posed method on each type of tasks is shown in Table 4. In general,
polyphonic task is more difficult than monophonic task. However,
we observed a strange behavior with better scores in the polyphonic
task than in the monophonic task, while the opposite is normally to
be expected. We will investigate the reason as a future work.

5. CONCLUSION

We proposed a new method of polyphonic sound event detec-
tion based on a Bidirectional Long Short-Term Memory Hid-
den Markov Model hybrid system (BLSTM-HMM), and applied
it to the DCACE2016 challenge task 2. We compared our pro-
posed method to baseline non-negative matrix factorization (NMF)
and standard BLSTM-RNN methods. Our proposed method out-
performed them in both monophonic and polyphonic tasks, and
achieved an average F1-score of 76.63% (error rate of 51.11%) on
the event-based evaluation, and an average Fl-score 87.16% (error
rate of 25.91%) on the segment-based evaluation.

In future work, we will investigate the reason for the counter-
intuitive results in the difference between monophonic and poly-
phonic task, the use of sequence discriminative training for
BLSTM-HMM, and we will apply our proposed method to a real-
recording dataset.

Table 4: Difference in the performance between monophonic and
polyphonic task

Event-base Segment-base
F1 [%] [ ER[%] | F1 [%] | ER [%]
Monophonic | 76.19 54.04 84.32 32.44
Polyphonic 76.87 49.61 88.70 22.53
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