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ABSTRACT

We trained a deep all-convolutional neural network with masked
global pooling to perform single-label classification for acoustic
scene classification and multi-label classification for domestic au-
dio tagging in the DCASE-2016 contest. Our network achieved
an average accuracy of 84.5% on the four-fold cross-validation for
acoustic scene recognition, compared to the provided baseline of
72.5%, and an average equal error rate of 0.17 for domestic audio
tagging, compared to the baseline of 0.21. The network therefore
improves the baselines by a relative amount of 17% and 19%, re-
spectively. The network only consists of convolutional layers to ex-
tract features from the short-time Fourier transform and one global
pooling layer to combine those features. It particularly possesses
neither fully-connected layers, besides the fully-connected output
layer. nor dropout layers.

Index Terms— acoustic scene classification, domestic audio
tagging, convolutional neural networks, masked global pooling,
deep learning

1. INTRODUCTION

Identifying the location in which a specific audio file was recorded,
e.g. a beach or a bus, and moreover understanding the sound sources
inside the recording, e.g. speech, is a challenging task for a ma-
chine. The complex sound composition of real life audio record-
ings makes it difficult to obtain representative features for recogni-
tion. However, having a machine that understands its environment,
e.g. through acoustic events inside the recording, is important for
many applications such as security surveillance and context-aware
services.

So far, most of the audio-related recognition systems have used
hand-crafted features, mainly extracted from the frequency domain
of the audio signal, such as Mel frequency cepstral coefficients
(MFCC) [1], log-frequency filter banks [2] and time-frequency fil-
ters [3]. However, with the rapid advance in computing power,
feature learning is becoming more common [4, 5]. In our previ-
ous work [6] we compared time-domain and frequency-domain fea-
ture learning using deep neural networks and found the latter to be
slightly superior. In this work, we will therefore train our convolu-
tional networks on the short-time Fourier transform (STFT) of the
audio segments and evaluate their performance both for the acoustic
scene classification task and for the domestic audio tagging task of
the DCASE-20161 contest.

1http://www.cs.tut.fi/sgn/arg/dcase2016/

2. DATASETS

2.1. Acoustic Scene Classification

The acoustic scene classification dataset consists of multiple record-
ings from 15 different acoustic scenes, which were recorded in dis-
tinct locations. The task is to correctly classify the single label, i.e.
the location, of every audio file. For each location, stereo audio
recordings of 3–5min were captured and split into 30 s segments.
The recordings were sampled at 44.1 kHz and 24 bit. Originally,
the dataset contained 1170 audio segments of 30 s. However, due to
radio interference from mobile phones and temporary microphone
failures, a few segments got partly corrupted and annotation errors
were provided. The clean dataset therefore contains some audio
files that are shorter than 30 s. For simplicity, we only selected the
left-hand channel of each recording when training and testing our
networks.

2.2. Domestic Audio Tagging

The dataset for domestic audio tagging is based on recordings made
in domestic environments. The objective of this task is to perform
multi-label classification on 4 s audio segments. In total, there exist
seven different classes which can all occur simultaneously in a sin-
gle audio segment. The training data is provided at sampling rates
of 48 kHz in stereo and 16 kHz in mono. However, the final eval-
uation data is only provided as monophonic recordings sampled at
16 kHz. We therefore only used the monophonic audio data with a
sampling rate of 16 kHz when training our networks.

2.3. Data Preprocessing

For data preprocessing, we solely computed the STFT and selected
the first half of the symmetric magnitude of the complex transform
for each time step. We used an asymmetric Hann window as a win-
dow function with a window length of 25ms and a hop size of
15ms. The STFT was computed using the librosa2 library. Fur-
thermore, common feature standardization was performed, i.e zero
mean and unit variance for each feature across the dataset. Note
that we did not downsample the audio files for the acoustic scene
recognition task.

2http://github.com/librosa
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3. NEURAL NETWORK

3.1. Network Architecture

The architecture of our all-convolutional network with masked
global pooling is shown in table 1. The network input in layer 0 is a
four dimensional tensor t ∈ Rb×d×h×w with batch size b, depth d,
height h and width w. The dimension of w is the number of Fourier
coefficients in the STFT, i.e. 552 for acoustic scene classification
and 201 for domestic audio tagging, respectively. The dimension of
h is not fixed and can vary due to the global pooling layer. During
testing, h is the total number of time steps for each preprocessed
audio file, i.e. we input the full audio segment. During training,
the size of h depends on the task. For acoustic scene classification,
h was randomly chosen within its valid range since the acoustic
scene must be recognized independent of the duration of the record-
ing. For domestic audio tagging, h was again the complete segment
since we do not know when a certain class occurs.

The first convolution layer 1 performs a one dimensional con-
volution. It convolves t only in time direction, i.e. in h. The fil-
ter size is therefore identical with w, resulting in w = 1 after the
convolution. Our network learns 256 filters in layer 1. They can
be interpreted as a learned filter bank. The following convolution
layer 2, 3 and 4 then combine adjacent time steps. We selected a
filter size of 3 and a stride of 2 for all three layers. Note that by
using a stride larger than 1, we reduce the size of h and therefore
replace the pooling layer, which is conventionally used for this pur-
pose. After each convolution we calculated the nonlinear activation
with the common rectified linear unit (relu) [7, 8].

The next layer 5 is a global pooling layer, i.e. we pool the output
of all trailing dimensions beyond the second, resulting in a 256 di-
mensional feature vector f . We selected mean-pooling as the pool-
ing function, but virtually any aggregation function could be used.
Due to the fact of different lengths of the audio files for acoustic
scene classification, we had to adapt the pooling layer slightly for
this task. When training the network with mini-batches, an input
t of fixed size must be used, i.e. h may not vary. Simply zero-
padding the shorter audio signals would distort the results since the
additional zeros would be taken into account by the network. We
therefore additionally input a mask m to our network. It is a vec-
tor of length b that denotes the actual length of each sample in the
mini-batch. Our masked global pooling layer then does not take the
additionally zero-padded values into account.

The output layer 6 is a standard fully-connected layer that com-
bines each value of our feature vector f . It has one neuron for each
class, i.e. 15 neurons for acoustic scene classification and 7 neurons
for domestic audio tagging. As a nonlinear activation function we
selected the softmax function for acoustic scene classification and
the sigmoid function for domestic audio tagging. The former calcu-
lates a probability distribution over all classes for single-label clas-
sification, while the latter outputs a posterior probability for each
class for multi-label classification. Note that our proposed network
architecture does not use any fully-connected layers, besides the
output layer, or dropout [9] layers to regularize the network.

3.2. Network Training

To train our networks, we used the Adam [10] gradient descent al-
gorithm with a mini-batch size of 96. The objective function was
the multinomial crossentropy for acoustic scene classification and
the binary crossentropy for domestic audio tagging. The learning
rate starts at 0.001 and is divided by 2 whenever the error plateaus.

Table 1: Architecture of our all-convolutional network with masked
global pooling.

No. Layer Dimension Parameters

Depth Height Width

0 Input 1 h 552 (201) -
1 Convolution 256 h 1 141,312
2 Convolution 256 h 1 196,608
3 Convolution 256 h 1 196,608
4 Convolution 256 h 1 196,608
5 Global Pooling 1 1 256 -
6 Fully Connected 1 1 15 (7) 3,855 (2,056)

Early-stopping was used as soon as either overfitting or no mean-
ingful improvement over multiple epochs were recognized. Batch-
normalization [11] is applied right after each convolution layer
before its nonlinear activation, following Ioffe et al. [11]. This
tremendously reduced the necessary training time. We initialized
the weights as described by He et al. [12] and trained all networks
from scratch. To regularize the networks, we used weight decay of
0.0004.

4. RESULTS

4.1. Acoustic Scene Classification

Our results for acoustic scene classification are given in table 2.
It shows the average accuracy in percent across all four folds of
the cross-validation for each individual class. For comparison, the
baseline [13] results are also given. The classifier of the baseline
is a Gaussian mixture model (GMM) with 16 Gaussians per class.
It uses 20 MFCC static coefficients, 20 delta coefficients, and 20
acceleration coefficients as features, extracted with a frame size of
40ms and 20ms hop size. Overall, our network achieves an accu-
racy of 84.5%, compared to the average baseline of 72.5%. This
is an absolute improvement of 12%. There exist only two acous-
tic scenes, namely cafe / restaurant and residential area, for which
the baseline achieves better results. Three acoustic scenes, namely
forest path, metro station and office, are even always correctly clas-
sified. The most difficult scene for our network to recognize is the
park, which coincides with the baseline.

4.2. Domestic Audio Tagging

Our results for domestic audio tagging are given in table 3. It shows
the equal error rate [14] (EER) averaged across all five folds of the
cross-validation for each individual class. For comparison, the base-
line [15] results are also given. The classifier of the baseline is a
Gaussian mixture model (GMM) with eight Gaussians per class. It
uses 14 MFCC static coefficients as features, extracted with a frame
size of 20ms and 10ms hop size. Overall, our network achieves an
error rate of 0.17, compared to the average baseline of 0.21. This is
a relative improvement of 19%. The easiest audio tag for our net-
work to recognize is child speech, whereas adult male speech is the
most difficult audio tag. Interestingly, our network has problems to
label the classes that are most easily recognized by the baseline, i.e.
broadband noise and video game / tv.
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Table 2: Results for acoustic scene classification.
Accuracy (%)

Acoustic Scene Baseline Network

Beach 69.3 78.2
Bus 79.6 83.3
Cafe / Restaurant 83.2 73.1
Car 87.2 91.0
City Center 85.5 96.2
Forest Path 81.0 100.0
Grocery Store 65.0 79.5
Home 82.1 89.7
Library 50.4 91.0
Metro Station 94.7 100.0
Office 98.6 100.0
Park 13.9 53.8
Residential Area 77.7 76.9
Train 33.6 62.8
Tram 85.4 92.3

Average 72.5 84.5

Table 3: Results for domestic audio tagging.

Equal Error Rate (EER)

Audio Tag Baseline Network

Adult Female Speech 0.29 0.18
Adult Male Speech 0.30 0.20
Broadband Noise 0.09 0.23
Child Speech 0.20 0.06
Other 0.29 0.19
Percussive Sound 0.25 0.11
Video Game / TV 0.07 0.24

Average 0.21 0.17

5. DISCUSSION

We selected a window size of 25ms and a hop size of 15ms for two
reasons. First, window sizes around 25ms have been proven useful
features for many classifiers [13], including neural networks [6].
Secondly, the size of the window corresponds with the input of our
network. Particularly when using the full sampling rate of 44.1 kHz
for acoustic scene classification, increasing the window size would
quickly lead to memory constraints and long training times of the
network.

We intentionally did not use either dropout or fully-connected
layers in our network. Recent research [16, 17] in computer vi-
sion showed that convolutional layers alone are strong regularizers.
Omitting the fully-connected layers greatly reduces the number of
network parameters to learn, which additionally speeds up training.

We observed that maintaining the full sampling rate of
44.1 kHz was crucial for the achieved accuracy in the acoustic
scene classification task. When we downsampled the audio files to
16 kHz, we noticed an overall loss of nearly 10%. We assume that
the equal error rate for domestic audio tagging would also decrease
when training the network on the full sampling rate. However, we
did not test this since the evaluation data is given only with a sam-
pling frequency of 16 kHz.

Due to memory constraints, we solely used the left-hand chan-
nel when training our networks. Using the provided stereo audio
files could therefore improve the results. Furthermore, using hand-
crafted features, e.g. cepstral coefficients or filter banks besides the
learned features might also be useful.

6. CONCLUSIONS

We proposed a deep all-convolutional neural network architecture
to perform single-label classification for acoustic scene classifica-
tion and multi-label classification for domestic audio tagging in the
DCASE-2016 contest. To handle the different lengths of the audio
samples, we introduced a masked global pooling layer. The net-
works were trained on the short-time Fourier transform of the input
signal. They achieved an overall accuracy of 84.5% compared to
the given baseline of 72.5% for acoustic scene classification and an
equal error rate of 0.17 compared to the given baseline of 0.21 for
domestic audio tagging, respectively. Further improvements might
be obtained by adding hand-crafted features to the learned feature
set.
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