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ABSTRACT 

 This report describes the algorithm for audio scene classification 

and audio tagging and the result for DCASE 2016 challenge data. 

We propose a discriminative training algorithm to improve the 

baseline GMM performance. The algorithm updates the baseline 

GMM parameters by maximizing the margin between classes to 

improve discriminative performance. For Task1, we use a hierar-

chical classifier to maximize discriminative performance, and 

achieve 84% accuracy for given cross validation data. For Task4, 

we apply binary classifier for each label, and achieve 16.71% EER 

for given cross validation data.  

 

Index Terms— audio scene classification, audio tag-

ging, multi-label classification, discriminative training, 

Gaussian mixture model (GMM) 

1. INTRODUCTION 

For human, auditory perception plays a critical role to aware en-

vironments and interact with surroundings. Since speech is the 

most important auditory input, automatic speech recognition has 

attracted many researchers for several decades [1], and has been 

significantly improved by recent advances in machine learning 

technology [2]. Another important auditory information is music, 

because people love music, and there are a lot of applications and 

related industry. Music and speech discrimination is used for uni-

fied audio codec that can encode and decode both speech and mu-

sic [3]. Music transcription is one of popular research topic in mu-

sic information retrieval [4]. Identifying music title and artist from 

a short snippet of a microphone input is one of popular application 

in smart phone [5]. However, other types of auditory input is less 

investigated and a relatively new area. Recognizing various types 

of sound may bring many potential usages. For example, discrim-

inating car, bus, subway, and street sound may help mobile map 

application to be smarter to suggest the corresponding route. If 

home robot or smart device can recognize audio event such as 

window breaking, fire alarm, and baby crying sound, it can notify 

the user when the event happens. The challenge on Detection and 

Classification of Acoustic Scenes and Events (DCASE) is initi-

ated to stimulate research in classifying and detecting such audio 

types. In recent advances in machine learning, deep neural net-

work (DNN) based algorithms outperform many other conven-

tional algorithms with the help of large database. It is expected 

that most of participants adopt variants of DNN algorithms. How-

ever, we have used GMM model which can be translated to single 

layered model, and propose an algorithm to update the model pa-

rameter to maximize the discrimination margin. There are two 

reasons why we have used single layered model for the tasks. 

First, DNN based algorithm did not outperform the proposed al-

gorithm by a meaningful margin when we use the same feature 

vectors and the same size of the dataset. In our internal experi-

ments, the performance of DNN based algorithms such as convo-

lutive neural network (CNN) and recurrent neural networks 

(RNN) increases as the dataset size increases by data augmenta-

tion. But, our focus is to investigate the effectiveness of the crite-

rion that we propose for discriminative training. This criterion can 

be further extended for DNN based algorithms. Secondly, we try 

to make the algorithm as simple as possible, because the potential 

applications of the system may have restrictions in computation 

or power. We apply the discriminative criterion, and achieve 84% 

accuracy for Task1 cross validation and 16.71% EER for Task4 

cross validation without increment of computation complexity 

compared to the baseline system. 

  

2. METHOD 

2.1. Features 

Given the Task1 wave files with the format of 44.1kHz, stereo, 

and 24bit, we first convert them into the wave files with the format 

of 44.1kHz, mono, and 16bit. Then, the Mel-frequency cepstral 

coefficient (MFCC) feature vectors of 60 dimensions including 

delta and acceleration coefficients are extracted. For Task1, we 

use given 16kHz sampled mono wave files to extract MFCC fea-

ture vectors of 60 dimensions including delta and acceleration co-

efficients. 

 

2.2. Model 

 The Gaussian Mixture Model (GMM) is used to model each 

scene, and we obtain the classification label 𝑦∗ of test input 𝑋 =
{𝑥1, … , 𝑥𝑇} by 

𝑦∗ =  argmax
𝑦∈𝑌

𝐹(𝑋, 𝑦; 𝜃)   

 

where 𝑌 is the set of 𝑀 scene labels, and 𝜃 is the GMM parameter 

set. From each speech frame, we obtain the feature vector 𝑥𝑡 , 1 ≤
𝑡 ≤ 𝑇.The discriminant function 𝐹(𝑋, 𝑦; 𝜃) can be modeled using 

the conditional distribution 𝑙𝑜𝑔𝑝𝜃(𝑦|𝑋) , and this can be ex-

pressed as 
𝐹(𝑋, 𝑦; 𝜃) = 𝑙𝑜𝑔𝑝𝜃(𝑦|𝑋)

                             = 𝑙𝑜𝑔𝑝𝜃(𝑋|𝑦)𝑝(𝑦)
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where 𝑝(𝑦) is the prior probability of the classification label, and 

we assume equal prior probability, i.e. 𝑝(𝑦) = 1/𝑀, for all 𝑦 ∈
𝑌. When using the 𝐾-mixture GMM with diagonal covariance, 

the probability 𝑝𝜃(𝑥𝑡|𝑦) can be expressed as 

 

𝑝𝜃(𝑥𝑡|𝑦) =  ∑ 𝑤𝑘𝑁(𝑥𝑡; 𝜇𝑘 , 𝜎𝑘)

𝐾

𝑘=1

 

 

where 𝑤𝑘, 𝜇𝑘, and 𝜎𝑘 are Gaussian mixture weight, mean vector, 

and variance of 𝑘-th mixture component.  

 With the assumption that 𝑥𝑡 is independent and identically dis-

tributed, the discriminant function can be expressed as 

 
𝐹(𝑋, 𝑦; 𝜃) = 𝑙𝑜𝑔𝑝𝜃(𝑋|𝑦)𝑝(𝑦)

                                    = 𝑙𝑜𝑔 [∏ 𝑝𝜃(𝑥𝑡|𝑦)
𝑇

𝑡=1
∙

1

𝑀
]
 

                                    = 𝑙𝑜𝑔 [∏ ∑ 𝑤𝑘𝑁(𝑥𝑡; 𝜇𝑘 , 𝜎𝑘)
𝐾

𝑘=1

𝑇

𝑡=1
∙

1

𝑀
] 

 

2.3. Maximum Likelihood Model 

Given the training data, (𝑋𝑛, 𝑦𝑛), 𝑛 = 1, … , 𝑁, the GMM param-

eter set 𝜃 can be easily obtained using the maximum likelihood 

(ML) criterion [11]: 

𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 ∑ 𝑙𝑜𝑔𝑝𝜃(𝑋𝑛|𝑦𝑛)
𝑁

𝑛=1
 

 

Using the HTK, we can obtain the ML baseline model parameter 

set 𝜃𝑀𝐿. 

 

2.4. Discriminative Model 

The ML is the most widely-used criterion to obtain the GMM pa-

rameter set 𝜃. However, the ML does not have good generaliza-

tion ability especially when the number of training data is small. 

In such cases, a discriminative training (DT) criterion shows bet-

ter result. In this work, we use the following discriminative train-

ing criterion [6], 7, 8, 9, 10]:  

 

𝐦𝐢𝐧
𝜌, 𝝃, 𝜃

−𝜌 +
𝐶

𝑁
∑ 𝜉𝑛

𝑁

𝑛=1

𝑠. 𝑡. 𝐹(𝑥𝑛, 𝑦𝑛; 𝜃) − 𝐹(𝑥𝑛 , 𝑦; 𝜃) ≥ 𝜌 − 𝜉𝑛

 

 

The learning criterion finds the parameter set by maximizing the 

margin 𝜌 and simultaneously minimizing the sum of slack varia-

bles 𝝃 = {𝜉1, … , 𝜉𝑛} so that the difference between the discrimi-

nant functions given the correct label and the incorrect labels ( 

𝑦 ∈ 𝑌\𝑦𝑛 ) is greater than or equal to 𝜌 − 𝜉𝑛. The parameter 𝐶 

controls the trade-off between the margin maximization and the 

training error minimization, i.e. sum of slack variables minimiza-

tion.  

 

2.5. Hierarchical GMM for Task1 

In the Task1 dataset, there are 15 scene classes, and some classes 

have very similar statistics. Thus, we use a 2-level hierarchical 

label structure where the 15 scene classes are grouped into 4 top 

classes, and each top class has 3-4 scene class labels. In this struc-

ture, we first classify the test input into one of 4 top classes, and 

then we can finally obtain the scene label by classifying the test 

input using the 2nd level classifier of the selected top class.  

 We grouped the 15 scene labels as following table: 

Table 1. Four Groups of 15 Scene Classes 

Group1 Group2 Group3 Group4 

beach 

forest_path 

park 

residential_area 

bus 

car 

train 

tram 

cafe/restaurant 

city_center 

grocery_store 

metro_station 

home 

library 

office 

 

In summary, we need 5 classifiers: one classifier for the top level 

and four classifiers for the 2nd level.  In the experiment, the result 

which does not use the hierarchical structure are also shown for 

the comparison. 

2.6. Binary GMMs for Task4 

In contrast to Task1, Task4 is multi-labeled tagging problem, 

which means each audio clip may have more than one labels 

among 7 labels in total. To generate multi-labeled tag, we build 

one vs. the rest binary GMM classifiers for each label. We divide 

the training samples into positive sets and negative sets. The pos-

itive sets consist of the samples that includes the target labels and 

the negative set consist of the samples that never include the target 

labels. Then, we train 7 binary classifiers to detect each label in-

dependently.  

3. EXPERIMENTAL RESULTS 

3.1. Task1 

The experiments were performed using the Task1 challenge data 

set with 4 folds split. The MFCC feature vectors were extracted 

with 20 dimensional cepstrum and the corresponding delta and 

acceleration coefficients. The frame size and its rate were 40ms 

and 20ms, respectively. In all experiments, we used 8 mixture 

components for GMM. The number of mixture component was 

determined by increasing it until there is no more performance 

improvement. First, the ML baseline model was obtained, and the 

𝜃𝑀𝐿 was updated by the DT criterion. Also, the hierarchical label 

structure was evaluated for each learning criterion. The average 

classification accuracies of all training methods for four folds 

were summarized in Table 2.  Classification Accuracy of each 

Method (%)Table 2. 

 

Table 2.  Classification Accuracy of each Method (%) 

 ML DT 
Hierarchical 

ML 

Hierarchical  

DT 

Fold1 72.41 79.31 75.86 84.83 

Fold2 66.21 70.34 63.45 77.59 

Fold3 72.15 80.54 73.83 86.58 

Fold4 79.11 80.48 82.19 86.99 

Avg. 72.47 77.67 73.83 84.00 

 
 Compared to the ML baseline model, the DT model shows about 

5% performance improvement. Comparing the ML model and hi-

erarchical ML model, we observed that there is a small improve-

ment. However, comparing the DT model and hierarchical DT 

model, we observed that there is a quite much improvement. The 
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hierarchical label structure shows more effective in the DT model 

than in the ML model. 

 In the experiments of hierarchical label structure, we obtained the 

classifier performances which were evaluated separately in each 

level and evaluated jointly. The performances for ML and DT are 

shown in Table 3 and Table 4, respectively. In the level 1, the DT 

model shows 2.7% performance improvement over the ML 

model. However, in the level 2, the DT model shows much per-

formance improvement (about 9.8%) over the ML model. 

 Finally, each class accuracy of Hierarchical DT model is shown 

in Table 5. The scene labels of café_restaurant and office show 

high accuracy (more than 90%) for all folds. However, the scene 

labels of library and park show low accuracy (less than 40%) in 

fold 2. 

 

Table 3. The Classifier Performances (%) Evaluated 

Separately in each Level and Evaluated Jointly for ML 

 Level 1 Level 2 Level 1+2 

Fold1 92.07 82.07 75.86 

Fold2 84.14 76.21 63.45 

Fold3 89.60 77.52 73.83 

Fold4 96.23 83.90 82.19 

Avg. 90.51 79.93 73.83 

 

 

Table 4. The Classifier Performances (%) Evaluated 

Separately in each Level and Evaluated Jointly for DT 

 Level 1 Level 2 Level 1+2 

Fold1 93.10 91.72 84.83 

Fold2 90.69 88.85 77.59 

Fold3 92.62 89.60 86.58 

Fold4 96.58 88.70 86.99 

Avg. 93.25 89.72 84.00 

 

 

Table 5. Class Accuracy (%) of each Fold given Hier-

archical DT model 

 Fold1 Fold2 Fold3 Fold4 

beach 

bus 

cafe_restaurant 

car 

city_center 

forest_path 

grocery_store 

home 

library 

metro_station 

office 

park 

residential_area 

train 

tram 

63.16 

100.00 

100.00 

95.00 

88.89 

95.24 

78.95 

95.45 

71.43 

73.68 

94.74 

100.00 

84.21 

38.89 

88.89 

100.00 

50.00 

100.00 

100.00 

73.68 

100.00 

85.71 

61.11 

38.89 

72.22 

100.00 

33.33 

57.14 

94.74 

88.89 

94.74 

100.00 

95.24 

73.68 

94.74 

88.89 

100.00 

80.00 

100.00 

90.91 

100.00 

65.00 

100.00 

60.87 

63.64 

52.63 

85.00 

90.00 

100.00 

100.00 

100.00 

84.21 

88.89 

100.00 

100.00 

100.00 

60.00 

89.47 

50.00 

100.00 

 

3.2. Task4 

The experiment were performed using the Task4 data with 5 fold 

split. The MFCC feature vectors were extracted with 20 dimen-

sional cepstrum and corresponding delta and acceleration coeffi-

cients. The frame size and its rate were 30ms and 10ms, respec-

tively. We conducted experiments with different numbers of mix-

tures. Table 6, 7, and 8 shows the results of 16, 32, and 64 mix-

tures of Gaussian model respectively. The corresponding average 

EERs were 18.71%, 17.97%, and 17.59%. 64 mixture model per-

formed the best if we choose the same number of mixtures for all 

labels. However, if we can tune the number of mixtures differently 

for each label, we could achieve up to 16.71%, which is 0.9% 

lower than 64 mixture result. Table 9 shows the performance 

when the number of mixture is tuned. 64 mixture was the best for 

adult female speech, other, and video game/tv. 32 mixture was the 

best for adult male speech, child speech, and percussive sound. 16 

mixture was the best for broadband noise. Although the different 

choice of the number of mixture for each label shows the better 

performance, we have submitted 64 mixture model result to the 

challenge, because our goal was to measure the performance of 

algorithm itself without any manual tuning. 

Table 6. Equal Error Rate (%) of 16 mixture model 

 ML DT 

adult female speech 27.68 28.46 

adult male speech 29.03 23.73 

broadband noise 8.18 4.38 

child speech 19.16 15.86 

other 30.16 31.29 

percussive sound 25.14 20.58 

video game/tv 6.67 6.67 

average 20.86 18.71 

Table 7. Equal Error Rate (%) of 32 mixture model 

 ML DT 

adult female speech 28.64 26.66 

adult male speech 25.79 20.88 

broadband noise 7.04 7.10 

child speech 16.70 15.19 

other 30.57 29.80 

percussive sound 25.64 19.92 

video game/tv 6.51 6.22 

average 20.13 17.97 

Table 8. Equal Error Rate (%) of 64 mixture model 

 ML DT 

adult female speech 29.14 24.9 

adult male speech 25.17 21.61 

broadband noise 7.28 7.42 

child speech 17.87 16.46 

other 30.04 27.85 

percussive sound 25.76 21.0 

video game/tv 6.56 3.87 

average 20.26 17.59 

Table 9. Equal Error Rate (%) of best mixture model 

 ML (#mixtures) DT  (#mixtures) 

adult female speech 27.68   (16) 24.9    (64) 

adult male speech 25.17   (64) 20.88  (32) 
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broadband noise 7.04     (32) 4.38    (16) 

child speech 16.70   (32) 15.19  (32) 

other 30.04   (64) 27.85  (64) 

percussive sound 25.14   (16) 19.92  (32) 

video game/tv 6.51     (32) 3.87    (64) 

average 19.75 16.71 

 

4. CONCLUSION 

In this report, we have proposed a discriminative training algo-

rithm that can be applied to conventional GMM model. After train-

ing the baseline GMM model, GMM parameters can be updated 

by maximizing the margin between classes to improve discrimina-

tive characteristics of the model. In the audio classification task, 

we have further applied hierarchical classifier to discriminate con-

fusing classes. In audio tagging task, we have used multiple binary 

classifier independently to tag each labels. The proposed model is 

as simple as GMM, but it has shown significantly improved per-

formance for both tasks. 
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