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ABSTRACT

The DCASE Challenge 2016 contains tasks for Acous-
tic Acene Classification (ASC), Acoustic Event Detection
(AED), and audio tagging. Since 2006, Deep Neural Net-
works (DNNs) have been widely applied to computer vi-
sions, speech recognition and natural language processing
tasks. In this paper, we provide DNN baselines for the
DCASE Challenge 2016. For feature extraction, 40 Mel-
filter bank features are used. Two kinds of Mel banks, same
area bank and same height bank are discussed. Experimen-
tal results show that the same height bank is better than the
same area bank. DNNs with the same structure are applied
to all four tasks in the DCASE Challenge 2016. In Task 1
we obtained accuracy of 76.4% using Mel + DNN against
72.5% by using Mel Frequency Ceptral Coefficient (MFCC)
+ Gaussian Mixture Model (GMM). In Task 2 we obtained
F value of 17.4% using Mel + DNN against 41.6% by using
Constant Q Transform (CQT) + Nonnegative Matrix Factor-
ization (NMF). In Task 3 we obtained F value of 38.1% using
Mel + DNN against 26.6% by using MFCC + GMM. In task
4 we obtained Equal Error Rate (ERR) of 20.9% using Mel
+ DNN against 21.0% by using MFCC + GMM. Therefore
the DNN improves the baseline in Task 1 and Task 3, and is
similar to the baseline in Task 4, although is worse than the
baseline in Task 2. This indicates that DNNs can be success-
ful in many of these tasks, but may not always work.

Index Terms— Mel-filter bank, Deep Neural Net-
work (DNN), Acoustic Scene Classification (ASC), Acoustic
Event Detection (AED), Audio Tagging

1. INTRODUCTION

Sounds carry a large amount of information about our ev-
eryday environment. Humans can perceive the sound scene
where they stay (busy street and office, etc.), and recognize
individual sound events (car passing by and footsteps). Al-
though image classification and detection have been popu-
lar in recent years, audio classification and detection have
not attracted a similar level attention. In the past years,
CLEAR 2007 was a challenge on detecting events and ac-
tivities [1]. The DCASE Challenge 2013 [2] contained chal-
lenge for scene classification and synthetic acoustic classifi-

cation . The DCASE Challenge 20161 held by Tampere Uni-
versity has four tasks in acoustic related problems. Task 1
is Acoustic Scene Classification (ASC), the goal of which is
to classify a test recording into one of the predefined classes
that characterize the environment in which it was recorded
- for example “park”, “home”, “office”. Task 2 is Acous-
tic Event Detection (AED) in Synthetic audio, which aims to
detect synthetic polyphonic sound events (eg. “doorslam”,
“human speaking”) that are present within an audio. Task 3
is Sound Event Detection in Real Life Audio. In contrast to
Task 2, it aims to detect acoustic events in real life, such as
“bird singing”, “car passing by”. Task 4 is Domestic Audio
Tagging, the goal of which is to perform multi-label classi-
fication on short recordings collected in a domestic environ-
ments.

ASC and AED are intimately related to industry appli-
cations. They have applications in audio indexing [3], au-
dio classification [4], audio tagging [5], audio segmentation
[6], surveillance, military and public abnormal event detec-
tion [7], etc. In previous work, Mel Frequency Ceptral Coef-
ficient (MFCC) and Gaussian Mixture Model (GMM) were
used for ASC [8]. McLoughlin et al. improved on this re-
sult by using auditory features and Deep Neural Network
(DNN) classifier [9]. Unsupervised learning used by Lee et
al. [4] proposed to use convolutional deep belief networks
to learn audio features. In AED, the Constant Q Trans-
form (CQT) and Nonnegative Matrix Factorization (NMF)
are widely used to detect sound events in a recording [10].
Hidden Markov Models (HMM) with Viterbi decoding have
been proposed [7], a universal background model (UBM) is
used to model background sound. In [11], a Bidirectional
Long Short Term Memory (BLSTM) is proposed, which
yields better result than the HMM. In audio tagging, MFCC
and GMM is a standard method to detect whether or not tag
occurrs in the audio [12]. Recently Convolution Neural Net-
works (CNNs) has been used for audio tagging in [13].

This work is aimed at providing DNN baseline for all
four tasks of the DCASE Challenge 2016. The reminder of
the paper is organized as follows. Section 2 discusses related
works. Section 3 describes the deep DNN structure. Sec-
tion 4 are experimental results we obtained on Task 1 - 4 of
DCASE Challenge 2016. Section 5 draws conclusion of our

1http://www.cs.tut.fi/sgn/arg/dcase2016/
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Figure 1: Upper: Mel-filter bank with same bank area (li-
brosa). Lower: Mel-filter bank with same bank height
(voicebox)

work and future research.

2. DEEP NEURAL NETWORKS

DNNs have been widely used in Computer Vision (CV), Nat-
ural Language Processing (NLP), etc. since 2006. Their vari-
ants include CNNs, Recurrent Neural Networks (RNNs). In
this paper, we propose to try same features and same struc-
tures of DNN for all of the four tasks in the DCASE Chal-
lenge 2016. This is aimed at evaluating how DNN performs
in these tasks compared with original baseline methods, as
well as providing a baseline for other researchers to compare.

2.1. Features

In audio processing, MFCCs are widely used in speech
recognition. However, MFCCs are developed inspired by
the human speech production process, which assumes sounds
are produced by glottal pulse passing through vocal tract fil-
ter. However, MFCCs discard useful information about the
sound, which restricts its ability for recognition and classifi-
cation. In recent years, Mel Bank Features have been widely
used in speaker recognition [14]. Other features such as CQT
[15] are used in music related tasks, which has good resolu-
tion in low frequency. In this paper, we apply Mel-filter bank
features with 40 channels to all of the four tasks.

Features extraction code is based on librosa2. The origi-
nal Mel-bank extracted by librosa is shown in upper part of
Figure 1. However, this kind of Mel-filter bank is designed
for speech analysis. Experimental results in Section 4 show
that using reweighted mel-bank with same height (shown in
lower part of Figure 1, which is same with voicebox3 in mat-
lab) performs better than the original Mel-filter bank.

2https://github.com/librosa
3http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

Figure 2: DNN used for Task 1 - 4

2.2. DNN structure

The DNN we use in our experiment is a fully connected neu-
ral network with 3 hidden layers. As the bag of frames fea-
ture can not capture time dependency, the input to the DNN
is taken as a concatenation of 10 frames mel-bank features so
there are 400 input nodes (10 frames * 40 Mel-filter banks).
We use 500 hidden units per layer. Relu [16] activation func-
tion is used. For Task 1, softmax output and categorical
cross-entropy loss function are used. For Task 2, Task 3, and
Task 4, binary output and binary cross-entropy function are
used. Dropout [17] with value of 0.1 is used to avoid over-
fitting. Rmsprop [18] optimizer are used since it is generally
faster than Stochastic Gradient Descend (SGD). The DNN
structure is shown in Figure 2.

3. EXPERIMENTS

In this section we evaluate the performance of Mel-filter bank
features + DNN on DCASE Challenge 2016 Task 1 - 4 on
ASC, AED and audio tagging. We use 40 Mel-filter bank fea-
tures shown in lower part of Figure 1. Then we apply DNN
shown in Figure 2 to all of the four tasks. These systems are
implemented in python. The souce code can be found in Task
14, Task 25, Task 36, Task 47. DNN implementation is based
on HAT8, which is an open source deep learning framework
built on top of Theano9.

4https://github.com/qiuqiangkong/DCASE2016 Task1
5https://github.com/qiuqiangkong/DCASE2016 Task2
6https://github.com/qiuqiangkong/DCASE2016 Task3
7https://github.com/qiuqiangkong/DCASE2016 Task4
8https://github.com/qiuqiangkong/Hat
9http://deeplearning.net/software/theano/
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3.1. Task 1: Acoustic Scene Classification

TUT Acoustic scenes 2016 dataset is used in this task. The
dataset consists of recordings from various acoustic scenes,
all having distinct recording locations. Each recording con-
tains 30-second segments. There are altogether 15 classes
with 4 fold cross validation. For training DNN, the batch
size is set to 100. Rmsprop (Section 3.2) learning rate is set
to 1e-3 at beginning then is tuned to 10-3 after 30 epochs.
The maximum epochs is set to 100. Time consumption is 3
s/epoch on Tesla 2090.

We compare the results of Mel-filter bank with the same
bank area (upper part of Figure 1) and the Mel-filter bank
with the same bank height (lower part of Figure 1). The re-
sults are shown in Table 1.

Table 1: Accuracy of Task 1
Frame
based acc.

Event
based acc.

MFCC + GMM
(Baseline)

- 72.5%

Mel (same bank
area) + DNN

39.6% 46.5%

Mel (same bank
height) + DNN

63.3% 76.4%

From this table, it can be observed that using the Mel +
DNN with the same bank height obtains accuracy of 76.4%,
outperforms MFCC + GMM baseline (72.5%). However, the
Mel-filter bank with the same bank area is much worse, with
an accuracy of 46.5%. This may result from environmental
sound need to be emphasised in high frequency. Normaliza-
tion of input may help but is not implemented in our exper-
iment and need to be further researched. In the reminder of
the paper, we use 40 Mel-filter bank with same bank area as
feature. Detailed results on each fold are shown in Table 2.

Figure 3: Confusion matrix of event based accuracy in Task
1.

Table 2: Fold wise accuracy of Task 1 using Mel + DNN
Frame based
acc.

Event based
acc.

fold 1 65.2% 80.0%
fold 2 61.5% 70.7%
fold 3 62.0% 74.8%
fold 4 64.6% 80.1%
average 63.3% 76.4%

Table 2 shows that the accuracy of scene classification in
different folds is not homogenious, with frame based accu-
racy ranging from 61.5% to 65.2% and event based accuracy
ranging from 70.7% to 80.1%. The overall Confusion matrix
is shown in Figure 3. We can see that “park” is easily recog-
nized as “residential area”. This may result from these scenes
share similar features, which is difficult to classify using bag
of words model.

3.2. Task 2: AED in Synthetic Audio

Audio provided by IRCCYN Ecole Centrale de Nantes is
used in Task 2. Training set includes 11 classes of sound
events. There are 20 samples provided for each sound event
class in the training set, plus a development set consisting of
18 minutes of synthetic mixture material in 2 minute length
audio files. The event-to-background ratio (EBR)10 is set to
-6, 0, +6 dB. In this task, we set the Rmsprop learning rate
to 10-3, the batch size to 20, the number of epochs to 20, re-
spectively. Binary output and sigmoid cost function are used.
Time consumption in Tesla 2090 GPU is 0.1 s/epoch. Results
are shown in Table 3.

Table 3: F value of Task 2
F value

CQT + NMF (Baseline) 41.6%
Mel + DNN 17.4%

Table 3 conveys that using Mel + DNN yields an F value
of 17.4% which is worse than CQT + NMF baseline (41.6%).
One possible explanation for this underperformance is that
DNN is not good at classifying samples that it has not seen,
with NMF has better generalization ability in classifying un-
seen samples. Detailed results on different EBR levels of -6,
0, +6 dB are shown in Table 4.

10http://www.cs.tut.fi/sgn/arg/dcase2016/task-sound-event-detection-in-
synthetic-audio
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Table 4: Fold wise F value of Task 2 using Mel + DNN
F value

-6 dB 16.0%
0 dB 17.6%

+6 dB 18.8%
Average 17.4%

3.3. Task 3: AED in Real Life Audio

The TUT Sound events 2016 dataset is used in this task. Au-
dio in the dataset is a subset of TUT Acoustic scenes 2016
dataset (used for task 1). Sound events in the TUT Sound
events 2016 dataset consists of recordings from two acous-
tic scenes: Home (indoor) and Residential area (outdoor). In
this task, we set the Rmsprop learning rate to 10-3, the batch
size to 20, the number of epochs to 50. Results are shown in
Table 5.

Table 5: F value of Task 3
Home Residential

area
Average

MFCC + GMM
(baseline)

18.1% 35.2% 26.6%

Mel + DNN 29.2% 47.0% 38.1%

Table 5 shows that for real life event detection using
Mel + DNN yields an F value of 38.1%, which outperforms
MFCC + GMM baseline (26.6%). Detailed results on each
fold are shown in Table 6.

Table 6: Fold wise F value of Task 3 using Mel + DNN
Home Residential

area
fold 1 28.0% 62.4%
fold 2 28.8% 34.5%
fold 3 22.3% 43.7%
fold 4 37.5% 47.5%
average 29.2% 47.0%

3.4. Task 4: Domestic audio tagging

The CHiMe-Home dataset is used in Task 4 . The objec-
tive of this task is to perform multi-label classification on
4-second audio chunks. There are 7 labels occurring in au-
dio segments including child speech and adult male, etc. Bi-
nary output and binary cross-entropy loss function are used

because the labels can occur simultaneously. We set the Rm-
sprop learning rate to 10-3, the batch size to 500, the number
of epoch to 100. Cross validation with 4 folds is used. Re-
sults are shown in Table 7.

Table 7: F value of Task 4
EER

MFCC + GMM (baseline) 21.0%
Mel + DNN 20.9%

Table 7 shows that we obtain Equal Error Rate (ERR) of
20.9% using Mel + DNN, which is similar to MFCC + GMM
baseline (21.0%). Detailed results on four folds are shown in
Table 8.

Table 8: Fold wise EER of Task 4 using Mel + DNN
EER

fold 1 19.3%
fold 2 15.6%
fold 3 26.3%
fold 4 22.4%
average 20.9%

4. CONCLUSION

In this paper, we have applied the same DNN structure to
Task 1 - 4 in the DCASE Challenge 2016 as a DNN baseline
for future research. We compared the Mel-filter bank features
with the same bank area and Mel-filter bank features with the
same height. Experimental results show that the mel-filter
bank feature with the same height performs much better in
Task 1. In summary, in Task 1, Mel + DNN is better than
MFCC + GMM (accuracy 76.5% against 72.5% ). In task 2,
Mel + DNN is worse than the CQT + NMF baseline (F value
17.4% against 41.6%). In task 3, Mel + DNN is better than
the MFCC + GMM baseline (F value 38.1% against 26.6%).
In task 4, Mel + DNN is similar to MFCC + DNN baseline
(20.9% against 21.0%). We publish our codes of Task 1 - 4
and hope this will attract interests from other institutions to
do further research.
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