
Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

CQT-BASED CONVOLUTIONAL NEURAL NETWORKS FOR AUDIO SCENE
CLASSIFICATION AND DOMESTIC AUDIO TAGGING

Thomas Lidy

Vienna University of Technology
Institute of Software Technology

Vienna, Austria
lidy@ifs.tuwien.ac.at

Alexander Schindler

Austrian Institute of Technology
Digital Safety and Security

Vienna, Austria
alexander.schindler@ait.ac.at

ABSTRACT

For the DCASE 2016 challenge on detection and classification of
acoustic scenes and events we submitted a parallel Convolutional
Neural Network architecture for the tasks of classifying acoustic
scenes and urban sound scapes (task 1) and domestic audio tag-
ging (task 4). A popular choice for input to a Convolutional Neu-
ral Network in audio classification problems are Mel-transformed
spectrograms. We, however, found that a Constant-Q-transformed
input improves results. Furthermore, we evaluated critical parame-
ters such as the number of necessary bands and filter sizes in a Con-
volutional Neural Network. Finally, we propose a parallel (graph-
based) neural network architecture, which captures relevant audio
characteristics both in time and in frequency, and submitted it to the
DCASE 2016 tasks 1 and 4. For the acoustic scenes classification
task our approach scored 80.25 % accuracy on the development set,
a 10.7 % relative improvement of the DCASE baseline system [1],
and achieved 83.3 % on the evaluation set (rank 14 of 35) in the
challenge. On the domestic audio tagging task, our approach is the
winning algorithm (rank 1 of 9) with 16.6 % equal error rate.

Index Terms— Deep Learning, Constant-Q-Transform, Con-
volutional Neural Networks, Audio Event Classification, Audio
Tagging

1. INTRODUCTION

Recent advances with Deep Learning approaches in image retrieval
have fueled the interest as well in audio-based tasks such as speech
recognition and music information retrieval. A particular sub-task
in the audio domain is the detection and classification of acous-
tic sound events and scenes, such as the recognition of urban city
sounds, vehicles, or life forms, such as birds.1 The IEEE AASP
Challenge DCASE 2016 is a benchmarking challenge for the “De-
tection and Classification of Acoustic Scenes and Events”. It com-
prises four tasks, which include acoustic scene classification in ur-
ban environments (task 1), sound event detection in synthetic and
real audio (tasks 2 and 3) and audio tagging of human activity in a
domestic environment (task 4).

We submitted our system (with slight differences) for tasks 1
and 4, which are focusing on classification and tagging of sound
files. We did not participate in tasks 2 and 3 on detection of events
in audio streams. The goal of task 1 was to classify test recordings
into one of predefined classes that characterizes the environment in
which it was recorded, for example “metro station”, “beach”, “bus”,

1http://www.imageclef.org/lifeclef/2016/bird

etc. [1]. The goal of task 4 was to classify sound snippets into
multiple (none, one, or more) of given tags related to domestic en-
vironments: child speech, adult male / female speech, video game,
percussive sounds, broadband noise from household appliances, etc.

A popular choice for applying Deep Learning to audio is the use
of Convolutional Neural Networks (CNN). The apparent method is
to use an audio spectrogram (derived from the Fast Fourier Trans-
form and/or other transformations) as an input to a CNN and to
apply convolving filter kernels that extract patterns in 2D, similar as
being done for image analysis and object recognition. Yet, audio has
a fundamental difference to images: The two axes in a spectrogram
do not represent a spatial coherence of visual data, but exhibit two
completely different semantics: time and frequency. Approaches
have been reported applying convolutions directly on the wave form
(i.e. time domain) data, however with not fully satisfying success
so far [2]. Therefore, typically audio is transformed into the time-
frequency domain, with some (optional) further processing steps,
such as the Mel transform and/or a Log transform.

In an earlier publication related to our participation in the
MIREX benchmarking contest (“Music Information Retrieval Eval-
uation eXchange”) [3] we have shown the successful application
of Mel-spectrogram based Convolutional Neural Networks on mu-
sic/speech classification (discrimination) [4]. Our approach won the
MIREX 2015 music/speech classification task with 99.73 % accu-
racy.2 As our background is the recognition of semantic high-level
concepts in music (e.g. genre, or mood, c.f. [5, 6]), and Mel Fre-
quency Cepstral Coefficients (MFCCs) are used in both music and
speech recognition, the use of the Mel scale was an evident choice.

However, we realized in the course of developing a solution
for the task of classifying acoustic scenes from urban sounds that
an adaptation was necessary to cover activity in very low and very
high frequencies that may or may not be rhythmical. Our research
and experimentation led us to applying the Constant-Q-Transform
(CQT), which captures low and mid-to-low frequencies better than
the Mel scale. We also did a number of alterations in the archi-
tecture of the Convolutional Neural Network. Earlier research [7]
showed that a combination of a CNN that captures temporal infor-
mation and another one that captures timbral relations in the fre-
quency domain is a promising approach for music genre recogni-
tion, in which typically both tempo and timbre (e.g. particular in-
struments) play an important role. Again, this had to be adapted for
the classification tasks in DCASE 2016.

This abstract accompanying our submission to DCASE 2016

2http://www.music-ir.org/mirex/wiki/2015:
Music/Speech_Classification_and_Detection_Results



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

is an extension to our paper submitted to the DCASE 2016 work-
shop [8]. In the workshop paper, we focused on task 1 only. For
related work, please refer to the workshop paper [8]. Section 2 de-
scribes our method in detail and provides a few alterations not de-
scribed in the workshop paper. Section 3 describes task 1 on acous-
tic scene classification, the data set and our results on the develop-
ment set. Section 4 describes task 4 on domestic audio tagging, the
dataset and our approach. Finally, in Section 5 we summarize our
conclusions on the presented approach.

2. METHOD AND SYSTEM

For both tasks – acoustic scene classification and domestic audio
tagging – we use Convolutional Neural Networks, which we trained
on CQT-transformed audio input. We describe these two parts in
more detail in this section.

2.1. Audio Preprocessing: CQT

Before being input to the neural network, a few preprocessing steps
are carried out on the original audio which are depicted in Figure 1.
First of all, a stereo audio signal is transformed to mono by averag-
ing the two channels. Then, we apply the Constant-Q-Transform.
The Constant-Q-Transform (CQT) is a time-frequency representa-
tion where the frequency bins are geometrically spaced and the so
called Q-factors (ratios of the center frequencies to bandwidths) of
all bins are equal [9]. The CQT is essentially a wavelet transform,
which means that the frequency resolution is better for low frequen-
cies and the time resolution is better for high frequencies. The CQT
is motivated from both musical and perceptual viewpoints: The hu-
man auditory system is approximately “constant Q” in most of the
audible frequency range, and also the fundamental frequencies of
the tones in Western music are geometrically spaced along the stan-
dard 12-tone scale [9]. Thus, the CQT typically captures 84 bands
covering 7 octaves of 12 semi-tones each, however, it allows to set
a different number of bands and also a higher number of bands per
octave. In our approach, we use a total number of 80 bands, with the
standard setting of 12 bands per octave, meaning that the 4 highest
bands will be cut off. We use a hop length of 512 samples (simi-
lar as it is typically used when a fast Fourier transform is applied
on 1024 samples long windows to calculate a spectrogram), i.e. a
CQT is computed every 512 samples (11.6 milliseconds). Follow-
ing the CQT, we perform a Log10 transform of all values derived
from the CQT. This process is performed on chunks, or segments,
of 41472 samples length (0.94 seconds), resulting in 82 CQT frames
(analogously to FFT frames). The idea is to process a multitude of
short-term segments from an audio example to be learned by the
neural network. In this case, a 30 second input file results in 31
CQT excerpts of shape 80 bands × 82 frames.

In our workshop paper [8] we show that using the CQT instead
of the Mel-transform has a beneficial impact. In our experiments,
the best result is achieved with 80 CQT bands.

Audio File Mono CQT Log NN

Figure 1: Preprocessing of audio before input to CNN

2.2. Convolutional Neural Network

82 frames

8
0
 C

Q
T
 b

a
n
d

s

...

filter 

32 filter maps

200
units

softmax
layer

15 
classes

10%
dropout

max
pooling 

...

32 filter maps

max
pooling 

Input CNN Layer

21,20 

10x23 

1x20

20x1

Pooling Layer Dense Layer Output

32x

32x

Figure 2: CNN architecture

Following [7] we created a parallel CNN architecture, which
comprises a CNN Layer which is optimized for processing and rec-
ognizing relations in frequency domain, and a parallel one which is
aimed at capturing temporal relations (c.f. Figure 2). Both parts of
the CNN architecture use the same input, i.e. the 80 bands × 82
frames CQT matrix as output of step 1 described in Subsection 2.1.
In each epoch of the training, multiple training examples, sampled
from the segment-wise CQT extraction of all files in the training
set, are presented to both pipelines of the neural network. Both
CNN layers are followed by a Max Pooling layer, which performs
a sub-sampling of the matrices that are output after applying the
CNN’s filter kernels. We describe this in more detail: In a Convo-
lutional Neural Network, weights are essentially learned in a filter
kernel of a particular shape. Multiple of such filter kernels – in our
approach 32 in each pipeline – are applied to the input data, by con-
volving over the input image. Convolution means multiplication of
the filter kernel with an equal sized portion of the input image. This
filter kernel window is then moved sequentially over the input data
(typically from left to right, top to bottom), producing an output of
either equal size (when padding is used at the borders), or reduced
by filter-length - 1 on each axis (when no padding is used, and the
filter kernel is kept inside the borders of the input).

The particularity of this process is that the weights that are
stored in each filter kernel are shared among the “input units” re-
gardless of their input location. The filter weights are updated after
each training epoch using back-propagation. Thus, by convolving
over the input data, the filter kernels learn characteristic structures
of the input data. The subsequent Max Pooling step serves as a data
aggregation and reduction step. The pooling length in each direc-
tion determines how many “pixels” are aggregated together in the
output. Max pooling thereby preserves only the maximum value
from the input within its pooling window. Note that Max Pooling is
applied to all 32 filter outputs (even though not visible in Figure 2).

In our CNN architecture, depicted in Figure 2, we use two
pipelines of CNN Layer with 32 filter kernels each, following by
a Max Pooling on all of these filter kernels. We altered the filter
and pooling sizes, for further improvement after the submission of
the DCASE Workshop paper [8]. Filter and pooling sizes are larger
now. The lower pipeline is aimed at capturing frequency relations.
Its filter kernel sizes are set to 10×23 and the Max Pooling size to
1×20. This means that the output of the filtering step is preserv-
ing more information on the frequency axis than in time. On the
contrary, the upper pipeline uses filter sizes of 21×20 and pooling
of 20×1, aggregating on the frequency axis and therefore retaining



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

more information on the time axis.
In the next step, the parallel architecture is merged into a single

pipeline, by flattening all the matrices from both previous pipelines,
concatenating them and feeding them into a dense (fully connected)
layer with 200 units. The parameters we described were found after
a larger set of experiments (not described in this paper).

Recently, a number of techniques have been presented that
make Deep Neural Networks generalize faster and better. One such
technique is Dropout: it can be applied to any layer and reduces
overfitting by dropping a percentage of random units at each weight
update [10, 11]. Dropping means that it disregards these units in
both input and output, so that they do not contribute to activation,
nor to any weight updates. In terms of activation of a unit’s output,
the traditional Sigmoid function has been widely replaced by the
ReLU: The Rectified Linear Unit simplifies and speeds up the learn-
ing process by using the activation function f(x) = max(0, x)
[12]. Due to its sparse activation (in a randomly initialized net-
work) only about 50% of hidden units are activated, which makes
the network generalize much faster [13]. The Leaky ReLU [14] is
an extension to the ReLU that does not completely cut off activation
for negative values, but allows for negative values close to zero to
pass through. It is defined by adding a coefficient α in f(x) = αx,
for x < 0, while keeping f(x) = x, for x ≥ 0 as for the ReLU.

In our architecture, we apply Leaky ReLU activation with
α = 0.3 in both Convolutional layers, and Sigmoid activation in the
dense layer. We apply a Dropout value of 0.1 to the fully connected
layer. The last layer is a so-called Softmax layer: It connects the
200 units of the preceding layer with as many units as the number
of output classes (15), and applies the Softmax function to guaran-
tee that the output activations to always sum up to 1 [13]. The output
from the Softmax layer can be thought of as a probability distribu-
tion and is typically used for single-label classification problems.
All layers are initialized with the Glorot uniform initialization [15].

For the results presented in Section 3.6 this CNN architecture
was trained over 100 epochs with a constant learning rate of 0.02.
The model is adapted in each epoch using Stochastic Gradient De-
scent (SGD) and a mini-batch-size of 40 instances.

The system is implemented in Python and using librosa for the
CQT-transform and Theano-based library Keras for Deep Learning.

3. TASK 1: ACOUSTIC SCENE CLASSIFICATION

3.1. Data Set

For the development of the system we described in Section 2 we
used the TUT acoustic scenes 2016 dataset provided by the DCASE
2016 organizers for task 1 on acoustic scene classification [1]. The
goal of this task is to classify a recording into one of 15 differ-
ent classes that represent urban and some non-urban environments.
The 15 classes are: beach, bus, cafe/restaurant, car, city center, for-
est path, grocery store, home, library, metro station, office, park,
residential area, train and tram. In this task 1, individual train and
test files are exclusively labeled with one class.

The sounds were recorded from different locations (mostly in
Finland) and use 44.1 kHz sampling rate and a 24 bit resolution.
For each location, a 3-5 minute long audio recording was captured.
The original recordings were then split into 30-second segments for
the challenge. This imposes the need for particular attention when
doing train/test set splits or cross-validation: one needs to make sure
that recordings from the same location are not to be found in differ-
ent sets, as it introduces a beneficial bias. Thus, the task organizers

made sure that all segments from the same original recording are
included in a single subset – either development dataset or evalua-
tion dataset. They also provide a 4-fold cross-validation setup for
the development set which ensures this correct splitting.

For each acoustic scene, 78 segments (39 minutes of audio)
were included in the development dataset and 26 segments (13 min-
utes of audio) were kept for evaluation. The development set con-
tains 1170 30-sec segments (in total 9h 45mins of audio), and the
evaluation set 390 30-sec segments (3h 15mins).

Full annotations for the development set were available, but no
annotations for the evaluation set, as the task was still open at the
time of this writing. We therefore exclusively used the development
set of this data set to create, improve and evaluate our methodology
for acoustic scene classification described in the next section, using
the 4-fold cross-validation splits provided by the organizers.

3.2. Baseline

The baseline system is a GMM classifier using MFCC audio fea-
tures calculated using frames of 40 ms with a Hamming window
and 50 % overlap. 40 Mel bands are extracted but only the first
20 coefficients are kept, plus delta and acceleration coefficients (60
values in total). The system learns one acoustic model per acoustic
scene class (GMM with 32 components) and performs the classi-
fication using a maximum likelihood classification scheme (expec-
tation maximization) [1]. The reported average classification accu-
racy over 4 folds is 72.5 %.

3.3. Evaluation Measures

As our system analyzes and predicts multiple audio segments per
input audio file, there are several ways to perform the final predic-
tion of an input instance:

Maximum Probability: The output probabilities of the Softmax
layer for the 15 classes are summed up for all segments be-
longing to the same input file. The predicted class is deter-
mined by the maximum probability among the classes from
the summed probabilities.

Majority Vote: Here, the predictions are made for each segment
processed from the audio file as input instance to the net-
work. The class of an audio segment is determined by the
maximum probability as output by the Softmax layer for this
segment instance. Then, a majority vote is taken on all pre-
dicted classes from all segments of the same input file. Ma-
jority vote determines the class that occurs most often.

In both cases, the resulting accuracy is determined by compar-
ing the file-based predictions to the groundtruth provided by the
task organizers. All accuracies mentioned in this paper as well as
the system submitted to the DCASE challenge use the Maximum
Probability strategy for decision making.

3.4. Results on the Development Set

For our experimental results, we used exclusively the development
dataset that was provided by the DCASE 2016 acoustic scene clas-
sification task organizers, as described before. The task organizers
also provided a cross-validation setup for this development dataset,
which consists of 4 folds distributing the 78 available segments
based on location, to ensure that all files recorded in same location
are placed on the same side of the evaluation, in order to prevent



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

bias from recognizing the recording location.We used the provided
fold splits in order to make results comparable to other work, in-
cluding the baseline system that was also provided by the task orga-
nizers. The reported average classification accuracy of the baseline
system over 4 folds is 72.5 %. With our main approach of a par-
allel CNN described in Section 2 we achieve 80.33 % accuracy by
max probability and 80.76 % accuracy by majority vote on 4 fold
cross-validation.

be bu ca ca ci fo gr ho li me of pa re tr tr

beach 63 0 0 2 3 0 0 0 0 0 0 6 4 0 0

bus 0 63 0 2 0 0 0 0 0 0 0 2 0 10 1

cafe/restaurant 0 3 45 0 0 0 21 6 0 2 0 0 0 1 0

car 0 0 0 78 0 0 0 0 0 0 0 0 0 0 0

city_center 0 0 0 0 76 0 0 0 0 1 0 0 1 0 0

forest_path 0 0 0 0 0 78 0 0 0 0 0 0 0 0 0

grocery_store 0 0 0 0 3 0 71 0 0 4 0 0 0 0 0

home 0 0 0 0 0 1 0 67 0 0 2 0 5 0 3

library 0 3 0 0 0 3 0 0 60 10 0 0 0 2 0

metro_station 0 0 0 0 0 0 0 2 9 62 0 5 0 0 0

office 0 0 0 0 0 0 0 14 0 0 64 0 0 0 0

park 0 1 0 0 1 1 0 2 5 0 0 39 29 0 0

residential_area 0 0 0 0 3 7 0 0 0 0 0 17 51 0 0

train 0 11 1 0 0 0 0 0 0 1 0 0 2 52 11

tram 0 1 0 3 0 0 0 0 0 1 0 0 0 2 71

Figure 3: Confusion Matrix of the optimized model including two-
class predictions (Figure 2)

3.5. Improvement with 2-class models

When we investigate the per-class accuracies by having a look at
the confusion matrix in Figure 3, it can be observed that the best
configuration of the proposed system excels for the classes car, city
center, grocery store and tram. The largest confusions are between
the classes residential area and park, cafe/restaurant and grocery
store as well as tram, train and bus. We also noticed that the fold
accuracies vary quite heavily.

To overcome the biggest mistakes in the model, we provide a
2nd approach, training additional pairwise (2 class) models on the
following classes:

• park vs. residential area
• cafe/restaurant vs. train
• home vs. library

We use the original base model, which is trained on all the
classes, to make initial predictions. Once a prediction is made for
any of the 6 classes above, this instance will be sent to an additional
model, trained only on 2 classes. This new prediction will replace
the original prediction. By this, we hope to overcome the confusion
between the most difficult classes. In our tests on the development
set, this could improve the results by 1 to 2 %.

The architectures for these 2-class models are single layer
CNNs with 15 filters each, and the following filter and pooling
sizes:

• park vs. residential area: filter 21×20, pooling 1×20
• cafe/restaurant vs. train: filter 21×20, pooling 1×20
• home vs. library: filter 21×20, pooling 20×1

As in the parallel architecture, the CNN and pooling layer is fol-
lowed by a full layer with 200 units and a Softmax layer, containing
2 output units. Activation is Leaky ReLU for the CNN layer, Sig-
moid for the full layer, and a Dropout of 0.1 has been used. These

models were trained on the respective instances of these classes
in the development set, over 50 epochs with a constant learn rate
of 0.02 (except cafe/restaurant vs. train, where the learn rate was
0.0002).

In the end we submitted predictions of 2 models:

• CQTCNN 1: the base model as in Figure 2
• CQTCNN 2: the base model improved by the 3 pairwise class

models

3.6. Results on the Evaluation Set

In the DCASE 2016 challenge on task 1, CQTCNN 1 (the base
model) achieved 81.8 % accuracy (rank 18 of 35) and CQTCNN 2
(the improved model) scored 83.3 % (rank 14 of 35) on the evalua-
tion set. The best algorithm achieved 89.7 % accuracy.

4. TASK 4: DOMESTIC AUDIO TAGGING

4.1. Data set

This task is based on audio recordings made in a domestic environ-
ment. The objective of the task is to perform multi-label classifica-
tion on 4-second audio chunks (i.e. assign zero or more labels to
each 4-second audio chunk).3

Predictions shall be made for the following 7 classes:

• c: Child speech
• m: Adult male speech
• f: Adult female speech
• v: Video game / TV
• p: Percussive sounds, e.g. crash, bang, knock, footsteps
• b: Broadband noise, e.g. household appliances
• o: Other identifiable sounds

The dataset however contains an 8th class: silence (’S’), which
is also annotated for audio chunks. This class is also predicted by
our system, however, gracefully ignored by the evaluation system
used by the task organizers.

4378 chunks are provided for system development, based on
partitioning at the level of 5-minute recording segments. For each
chunk, multi-label annotations were first obtained for each of 3
annotators [16]. However, for system development, only chunks
where an agreement (by majority vote) of the annotators is present,
are used, leaving 1946 such ’strong agreement’ chunks for the de-
velopment dataset. 816 majority vote agreed chunks are used for
evaluation of the task submission.

The audio data for the development set was provided in 48kHz
stereo and 16kHz mono format. However, the evaluation set is only
provided with 16kHz mono (obtained by downsampling the right-
hand channel of the 48kHz recordings) “with the aim of approxi-
mating typical recording capabilities of commodity hardware”.

4.2. Audio Preprocessing

As the evaluation on this task is performed on 16 kHz audio, we also
used only the 16 kHz mono examples provided in the development
set for training. We, however, resampled the audio inputs to 22 kHz,

3http://www.cs.tut.fi/sgn/arg/dcase2016/
task-audio-tagging



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

to ensure the compatibility with our framework that is optimized
for 22 and/or 44 kHz, before feeding it to the audio preprocessing
described in Section 2.1.

4.3. Approach

We used, in principle, the parallel CNN as described in Section 2.2
for this task. Due to this task being a multi-label prediction task, we
altered the final output layer from a Softmax layer to a standard full
layer with Sigmoid activation function. This is because Softmax
optimizes the output to have probabilities summing up to 1 for all
classes, which is only desirable in single-label classification.

For the predictions on the evaluation set of DCASE task 4
we trained the system on the ’refined development set’, containing
the 1946 instances only where the annotators had a strong agree-
ment. For the evaluation, 816 instances, also with a strong annotator
agreement, were used (with 16 kHz mono audio format).

No additional 2-class models were used in this system and task.

4.4. Evaluation Measure

As per the task organizers, performance is measured using the equal
error rate (EER), which is defined as the fixed point of the graph
of false negative rate versus false positive rate [17]. The EER is
computed individually for each label. We did not measure the EER
on the development set.

4.5. Results

Our approach won the DCASE 2016 domestic audio tagging task
with 16.6% equal error rate on the evaluation set. The DCASE base-
line system of this task has an equal error rate of 20.9% and the sys-
tem ranked second scored at 16.8% EER, also using a Convolutional
Neural Network approach. The results vary rather strongly between
the classes, a detailed comparison of class-wise performance of all
submitted algorithms can be found on the result web site.4

5. SUMMARY

We have shown how we adapted a musically inspired Convolu-
tional Neural Network approach to recognize acoustic scenes from
recordings of urban and domestic environments. The crucial adap-
tations were the utilization of the Constant-Q-Transform to capture
essential audio information from both low and high frequencies
in sufficient resolution and the creation of a parallel CNN archi-
tecture, which is capable of capturing both relations in time and
frequency. The presented Deep Neural Network architecture has
shown a 10.7 % relative improvement over the baseline system pro-
vided by the DCASE 2016 Acoustic Scene Classification task or-
ganizers, achieving 80.25 % on the development set and the same
4-fold cross-validation setup as provided. Moreover, it achieved
83.3 % on the evaluation set, ranking 14th of 35 in the DCASE
2016 challenge’s task 1. On task 4 on domestic audio tagging, our
approach was the winning algorithm (rank 1 of 9) with 16.6 % equal
error rate. We conclude that this system is capable of detecting ur-
ban and domestic acoustic settings, yet there is ample room for im-
proving the system further.

4http://www.cs.tut.fi/sgn/arg/dcase2016/
task-results-audio-tagging

6. ACKNOWLEDGMENTS

We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan X GPU used for this research.

7. REFERENCES

[1] T. H. Annamaria Mesaros and T. Virtanen, “TUT database
for acoustic scene classification and sound event detection,”
in 24th European Signal Processing Conference (EUSIPCO
2016), Budapest, Hungary, 2016.

[2] S. Dieleman and B. Schrauwen, “End-to-end learning for mu-
sic audio,” ICASSP, IEEE International Conference on Acous-
tics, Speech and Signal Processing - Proceedings, pp. 6964–
6968, 2014.

[3] J. Downie, K. West, A. Ehmann, and E. Vincent, “The 2005
music information retrieval evaluation exchange (MIREX
2005): preliminary overview,” in 6th Int. Conf. on Music In-
formation Retrieval (ISMIR), 2005, pp. 320–323.

[4] T. Lidy, “Spectral convolutional neural network for music
classification,” in Music Information Retrieval Evaluation eX-
change (MIREX), Malaga, Spain, October 2015.

[5] T. Lidy and A. Rauber, “Evaluation of feature extractors and
psycho-acoustic transformations for music genre classifica-
tion,” in Proceedings of the International Conference on Mu-
sic Information Retrieval (ISMIR), London, UK, September
11-15 2005, pp. 34–41.

[6] T. Lidy, C. N. S. Jr., O. Cornelis, F. Gouyon, A. Rauber,
C. A. A. Kaestner, and A. L. Koerich, “On the suitability of
state-of-the-art music information retrieval methods for ana-
lyzing, categorizing, structuring and accessing non-western
and ethnic music collections,” Signal Processing, vol. 90,
no. 4, pp. 1032 – 1048, April 2010, Special section: ethnic
music audio documents: from the peservation to the fruition.

[7] J. Pons, T. Lidy, and X. Serra, “Experimenting with musically
motivated convolutional neural networks,” in Proceedings of
the 14th International Workshop on Content-based Multime-
dia Indexing (CBMI 2016), Bucharest, Romania, June 2016.

[8] T. Lidy and A. Schindler, “CQT-based Convolutional Neural
Networks for Audio Scene Classification,” in Workshop on
Detection and Classification of Acoustic Scenes and Events
(DCASE 2016), Budapest, Hungary, 2016.

[9] C. Schörkhuber and A. Klapuri, “Constant-Q transform tool-
box for music processing,” 7th Sound and Music Computing
Conference, pp. 3–64, Jan 2010.

[10] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by prevent-
ing co-adaptation of feature detectors,” arXiv: 1207.0580, pp.
1–18, 2012.

[11] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Re-
search (JMLR), vol. 15, pp. 1929–1958, 2014.

[12] V. Nair and G. E. Hinton, “Rectified linear units improve re-
stricted boltzmann machines,” Proceedings of the 27th Inter-
national Conference on Machine Learning, no. 3, pp. 807–
814, 2010.



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

[13] M. A. Nielsen, Neural Networks and Deep Learning.
Determination Press, 2015. [Online]. Available: http:
//neuralnetworksanddeeplearning.com

[14] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinear-
ities improve neural network acoustic models,” ICML 2013,
vol. 28, 2013.

[15] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings
of the 13th International Conference on Artificial Intelligence
and Statistics (AISTATS), vol. 9, 2010, pp. 249–256.

[16] P. Foster, S. Sigtia, S. Krstulovic, J. Barker, and M. D. Plumb-
ley, “Chime-home: A dataset for sound source recognition in
a domestic environment,” in Applications of Signal Process-
ing to Audio and Acoustics (WASPAA), 2015 IEEE Workshop
on. IEEE, 2015, pp. 1–5.

[17] K. P. Murphy, Machine Learning: A Probabilistic Perspective,
2012.


