
Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

ACOUSTIC SCENE CLASSIFICATION USING DEEP LEARNING

Rohit Patiyal, Padmanabhan Rajan

School of Computing and Electrical Engineering
Indian Institute of Technology Mandi

Himachal Pradesh, INDIA
rohit21122012@gmail.com, padman@iitmandi.ac.in

ABSTRACT

Acoustic Scene Classification (ASC) is the task of classifying audio
samples on the basis of their soundscapes. This is one of the tasks
taken up by Detection and Classification of Acoustic Scenes and
Events 2016 (DCASE-2016) challenge. A labeled dataset of audio
samples from various scenes is provided and solutions are invited.
In this paper, use of Deep Neural Networks (DNN) is proposed for
the task of ASC.

Here, different methods for extracting features with different
classification algorithms are explored. It is observed that DNN
works significantly better as compared to other methods trained
over the same set of features. It performs at par with the state-
of-the-art techniques presented in DCASE-2013.

It is concluded that the use of MFCC features with DNN works
the best, giving 97.6 % cross-validation score on the development
dataset-2016 data for a particular set of parameters for the DNN.
Also training a DNN does not take larger run times compared to
others methods.

Index Terms— Audio Scene, Machine Learning, Deep Neural
Networks

1. INTRODUCTION

This paper serves as the technical report for the accompanied sub-
mission from IIT Mandi, India to the Acoustic Scene Classification
task of DCASE Challenge 2016. The task involves predicting the
scene label of an unknown audio sample. The system responsible
to perform the task is to be trained using the dataset provided in the
DCASE challenge. This dataset contains labelled audio samples of
different classes which can be used to perform supervised learning
to train a classifier model.

In our submission, Deep Neural Networks (DNN) classifier
with Mel Frequency Cepstral Coefficients (DNN) features is used.
Results of various experiments is reported in this paper where other
features are explored. Along with that, DNN parameters are also
varied to achieve better accuracies. Rationale for using MFCC and
DNN is well supported by the experimental results obtained.

Note that all results are reported as per the cross-validation
setup provided in DCASE-2016.

2. FEATURES EXPLORED

The following feature sets have been explored for the task.

2.1. Mel-Frequency Cepstral Coefficients (MFCC)

MFCC collectively represent the short-term power spectrum of a
sound sample.

These are widely used as features in applications like speech
recognition, speaker recognition, genre classification and similar-
ity measures in music information retrieval. These are sensitive to
noise and not speech, so are more appropriate to be applied here in
the case of scene classification.

MFCCs are obtained as follows:[1]

1. Take the Short Time Fourier Transform of an audio sample.

2. Map the power spectrum obtained above onto the mel scale
by multiplying the spectrum with mel-scaled triangular over-
lapping filters (mel filter banks)

3. Take the log of mel spectrum obtained above

4. Take the discrete cosine transform (DCT) of the log spectrum
to obtain required number of coefficients.

5. MFCCs are the amplitudes output of the DCT.

In the implementation, the librosa library from the baseline is
used to extract the features.

Figure 1: MFCC Features plotted as spectrum

Figure 2: Mel scaled filter banks

Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

In figure 2, each column in the plot represents the value of the
MFCC coefficient in a particular frame. The shape of the mel fil-
ters is shown in figure 3 which leads to more resolution in lower
frequency and less resolution in the higher frequency range.

2.2. Linear Frequency Cepstral Coefficients (LFCC)

LFCC are similar to MFCC but the only difference is that the fea-
tures are not mel scaled but distributed uniformly. In this all the
steps are done similar to MFCC but only the step of multiplying
the spectrum with mel filter banks is changed. Here the filter banks
are linear in the frequency scale [2] . Features are extracted using
voicebox tool [3].

Figure 3: Linear scaled filter banks

2.3. Antimel Frequency Cepstral Coefficients (AntiMFCC)

AntiMFCC are just the opposite of MFCC features. Here, the dif-
ference is that the spectrum is multiplied with filter banks which
are just the reverse of mel filter banks along the frequency axis i.e.
narrower triangles (higher resolution) at the higher frequency and
wider (lower resolution) in the low frequency range [2]. Features
are extracted using voicebox tool [3].

Figure 4: Antimel scaled filter banks

2.4. Chroma Features

Chroma features are powerful representation for music audio. In
this, the entire spectrum is projected onto bins representing distinct
semitones (or chroma) of the musical octave [4].

This is considered in order to compare with other frequency
scaling technique observed above which are mel, linear, and antimel
scaling.

Since, in music, notes exactly one octave apart are perceived
as similar, knowing the distribution of chroma features even with-
out the absolute frequency (i.e. the original octave) can give useful
musical information about the audio and may even reveal perceived
musical similarity that is not apparent in the original spectra [4].
Features are extracted using the default librosa library.

Figure 5: Chroma Features plotted as spectrum

2.5. All-Pole Group Delay Features (APGDF)

In features like MFCC, which are derived from short term magni-
tude spectrum, the phase spectrum remains unused. A useful repre-
sentation of the phase is the all-pole group delay function [5].

The group delay function is defined as the negative derivative
of the phase spectrum. All pole Group Delay Features are derived
as follows:

1. Perform all-pole modeling on the audio frames with a pre-
diction order of say p = 20 and obtain the filter coefficients
a(κ).

2. From the a(κ), form the frequency response H(ω).

3. Compute the group delay function by taking the negative
derivative of the phase response of H(ω). In practice, the
derivative is computed using the sample-wise difference.

4. Take DCT on the group delay function.

Implementation is done using the librosa library.

3. CLASSIFICATION METHODS

3.1. Gaussian Mixture Model (GMM)

A GMM based classifier is a classification technique in which each
class is modeled using a mixture of multivariate Gaussian distri-
butions components. The components are identified by their mean
vectors and covariances matrices and, the mixture distribution is
obtained by adding the components with weights termed as mixing
coefficients. [6]

The parameters for each component are estimated from the data
using iterative Expectation Maximization (EM) algorithm which
maximizes the likelihood or using Maximum A Posteriori (MAP)
method from a model with priors. [6] The expression for multivari-
ate Gaussian distribution is :

f(x) =
1√

(2π)n|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
Here µ and Σ are the mean vector and the covariance matrix of
the data feature values respectively. The baseline system uses the
GMM from the scikit-learn library [6]

3.2. Deep Neural Network from TensorFlow

Tensorflow is an open source software library for numerical com-
putation using data flow graphs. It provides a simplified interface
similar to the popular scikit-learn python library [6], following the
fit-predict model, named TF learn / skflow.

Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

Deep learning API of TF learn / skflow allows users to manip-
ulate the number of layers, nodes, iterations, etc. [7]

A Deep Neural Network is a supervised learning technique that
learns a function f(·) : Rm → Ro with the help of training data
set, where m is the number of dimensions for input and o is the the
number of dimensions for output. For a data instance having fea-
turesX = x1, x2, ..., xm and a target y, the neural network learns a
non-linear function approximator for the task of classification. This
is done for all training i nstances and the weights between nodes
of the network are calculated using algorithms like backpropaga-
tion, AdaGrad, or other optimizers. Any test sample is passed on
through the network to get the output as the posterior probabilities
for the targets. [6]

4. SETUP USED

4.1. Hardware Setup

To perform the experiments, a single computer is used and the run
time benchmarks are based on it. The specifications of the machine
are :

Component Value
CPU cores 32, Intel Xeon
CPU Clock 2.00 GHz
RAM 48228 MB

Table 1: Hardware used for the experiments

4.2. Methodology

The process followed to obtain the evaluation results as given in
the baseline system is shown in fig 6. At the time of training, each
audio sample is divided into frames and features are extracted from
each frame. Features from the frames are then given to a classifier,
DNN in this case, where it learns the weights with the help of the
corresponding training label.

Figure 6: Methodology for system evaluation

When an unknown sample is to be tested, a similar procedure
is followed but this time, probability for a frame belonging to each

class is calculated using the classifier model and then these proba-
bilities are aggregated for the complete audio sample using logadd
operation. The label of the class with the highest score is assigned
to the audio sample.

5. EXPERIMENTAL RESULTS

A set of experiments were performed in order to finalize with a
system to be proposed for the challenge. DCASE-2016 acoustic
scenes dataset is used and the results are obtained using the provided
development mode cross-validation scheme.

5.1. Results using Baseline MFCC-GMM Classifier

The given baseline implementation uses MFCC features and Gaus-
sian mixture models to do the classification.

Here, in Table 2, accuracy of this is reported, where we can
see that changing the number of mixture models does not affect
the accuracy. Also the run time increases significantly for larger
number of mixture models.

Mixtures Accuracy Run Time (mins)
4 68.7 11.91
8 70.0 45.42
16 70.0 65.71
32 69.5 82.65
64 68.6 326.16
128 68.1 698.59

Table 2: Performance of baseline system with different number of
mixture models.

5.2. Results using Different Features with DNN

In order to understand the effect of features for the task, different
feature sets have been observed with the same classifier. The classi-
fier considered for this task is a DNN with 3 layers each having 100
nodes and is trained with a learning rate of 0.01 in batches of size
1024 and number of steps for training is kept as 1000. This is done
using using the skflow APIs from the tensorflow library

In Table 3, the performances of DNN with different features
has been shown. We can clearly see that MFCC performs far better
as compared to other features. Also, cepstral coefficients obtained
using linear and antimel filter banks, i.e. LFCC and AntiMFCC are
better than others but not MFCC.

Features Accuracy
MFCC 84.2
LFCC 78.4
AntiMFCC 63.7
Chroma Features 40.8
APGD Features 39.0

Table 3: Performance of different feature sets with DNN of size
[100,100,100] with learning rate as 0.01, batch size as 1024 and
number of steps as 1000.

Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

5.3. Results using MFCC-DNN Classifier

As observed in earlier experiments 3, MFCC outperforms as com-
pared to other features. So, further experiments are performed using
MFCC along with different DNN sizes.

As evident from Table 4, using a DNN as the classifier gives a
significant improvement from the baseline accuracy. The size and
parameters of the network is varied to obtain optimal accuracy in the
development mode. The run time observed is also less as compared
to the baseline system.

Layers Nodes/layer Steps Accuracy Run Time (mins)
2 100 2000 86.6 10.92
2* 500 4000 91.1 25.21
3 1000 2000 92.9 71.33
3* 1000 2500 97.6 58.62
3 1000 3000 94.5 64.81
3* 1000 5000 93.3 111.61
3 2000 3500 92.5 234.132

Table 4: Performance of MFCC-DNN system with different param-
eter values. The star in some of the rows represent use of exponen-
tial decay in place of a constant value for the learning rate.

6. SETUP OF SUBMISSION SYSTEM PROSPOSED

The submission system proposed uses MFCC features with the fol-
lowing parameters which are to be passed into DNN of a specific
configuration as shown next in Table 6. The MFCC parameters used
are shown below :

Parameter Value
Window Hamming asymmetric
No. of mfcc coeff. 20
No. of mel bands 40
FFT length 2048
fmin 0
fmax 22050
htk false
delta & acc. width 9

Table 5: MFCC feature parameter values used in the proposed sys-
tem.

It is to be noted that these are no different from the baseline
system. There are no significant improvements observed when the
values are changed. On the other hand, as observed in Table 4, the
DNN structure parameters do matter and the following configura-
tion works the best among others. The parameter values for the
DNN proposed are summarized in the following Table 6.

7. RESULTS OF SUBMISSION SYSTEM PROSPOSED

The results obtained from the proposed system using the develop-
ment mode cross-validation setup is shown below in Table 7

Here column 1 represents the scene label of the audio. The
second represents the number of samples of the corresponding scene
and third represents the number of samples predicted by the system
to be of the scene. The fourth is the accuracy calculated as per the

Parameter Value
Layers 3
Nodes per Layer 1000
Steps 2500
Learning Rate Exp. decay (0.1-0.01)
Batch size 1024

Table 6: DNN parameter values used in the proposed system.

challenge rules, which is, in principle, the recall value obtained for
each scene.

Scene label Nref Nsys Accuracy
beach 78 78 100.0 %
bus 78 81 100.0 %
cafe/restaurant 78 83 100.0 %
car 78 76 97.5 %
city center 78 77 98.9 %
forest path 78 78 100.0 %
grocery store 78 76 97.4 %
home 78 80 97.2 %
library 78 74 92.6 %
metro station 78 78 100.0 %
office 78 80 100.0 %
park 78 78 98.8 %
residential area 78 77 98.7 %
train 78 67 85.3 %
tram 78 87 97.5 %
Overall accuracy 1170 1170 97.6 %

Table 7: Accuracy of the proposed system for each scene and over-
all.

Most of the samples are classified correctly except those of the
confusing classes, e.g. in train and tram. The accuracies in each
fold is show in Table 8

CV Step Accuracy
Fold 1 98.7 %
Fold 2 96.8 %
Fold 3 95.5 %
Fold 4 99.3 %
Overall 97.5 %

Table 8: Accuracy of the proposed system for each fold and overall.

8. CONCLUSION

In conclusion, Deep Neural Networks with MFCC works signifi-
cantly better than the baseline system. The accuracies range from
86.6 % to 97.6 % when DNNs of different sizes and parameters are
used. The feature extraction parameters does not affect the accu-
racies much. Also, particular set of values of parameters of DNN,
as reported in table 6, performs better as compared to other values.
DNN with 3 layers with each layer containing 1000 units trained
in batches of 1024 using an exponentially decaying learning rate of
0.1 to 0.01 in 2500 steps performs the best, giving a recall accuracy
of 97.6 % on DCASE-2016 dataset in CV development mode.

Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

9. REFERENCES

[1] M. Sahidullah and G. Saha, “Design, analysis and experimental
evaluation of block based transformation in MFCC computa-
tion for speaker recognition,” Speech Communication, vol. 54,
no. 4, pp. 543–565, 2012.

[2] H. Lei and E. L. Gonzalo, “Mel, linear, and antimel frequency
cepstral coefficients in broad phonetic regions for telephone
speaker recognition.” in INTERSPEECH, 2009, pp. 2323–
2326.

[3] M. Brookes et al., “Voicebox: Speech processing toolbox for
matlab,” Software, available [Mar. 2011] from www. ee. ic. ac.
uk/hp/staff/dmb/voicebox/voicebox. html, vol. 47, 1997.

[4] D. Ellis, “Chroma feature analysis and synthesis.”
[Online]. Available: http://labrosa.ee.columbia.edu/matlab/
chroma-ansyn/

[5] A. Diment, R. Padmanabhan, T. Heittola, and T. Virtanen,
“Group delay function from all-pole models for musical in-
strument recognition,” Computer Music Multidisciplinary Re-
search 2013, Revised Selected Papers, Lecture Notes in Com-
puter Science, Springer Verlag, 2014.

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Re-
search, vol. 12, pp. 2825–2830, 2011.

[7] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

