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ABSTRACT

We submit a two-stage scheme for the detection of audio
events in synthetic audio.At a first stage, the endpoints of
candidate events are located by means of an unsupervised
method based on dictionary learning. At a second stage, each
candidate event is matched against all provided event tem-
plates using a variant of the Smith-Waterman algorithm. This
stage includes a hypothesis test against scores generated by
random permutations of the feature sequences corresponding
to the candidate event and each reference template. The un-
known event is classified to the reference template that gener-
ates the highest computed score. The segment-based values
of the F-measure and Error Rate, when the method is tested
on the provided development dataset of the 2016 DCASE
Challenge, are 64.01% and 50.75%, respectively. The cor-
responding values during event-based evaluation are 62.52%
and 51.85%.

Index Terms— Dictionary learning, template matching,
Smith-Waterman

1. METHOD DESCRIPTION

The proposed method addresses the 2nd task of the
DCASE2016 challenge (sound event detection in synthetic
audio) in two stages: a segmentation stage and a classifica-
tion stage.

1.1. Segmentation

The segmenter is based on recent work by the authors in [1],
which was developed in the context of singing voice detec-
tion and employs dictionary learning. More specifically, the
audio recording to be segmented is first represented by a se-
quence of feature vectors. The adopted feature extraction
scheme uses a moving window technique to compute the
spectrogram of the audio signal. The length of the moving
window is 46.4 ms and the hop size is 11.6 ms. The spec-
trogram serves to compute a bark-band representation of the
signal by summing together the short-time Fourier transform

coefficients that reside within the limits of the respective bark
band, thus yielding a sequence of 24-dimensional vectors.

The KSVD algorithm [2] is subsequently used to learn
a dictionary of 64 atoms which are combined to yield a 3-
sparse representation of the feature sequence. The frequency
of excitation of the dictionary atoms during the reconstruc-
tion procedure is used to estimate their probability of appear-
ance, based on which the information content of each atom
is computed. Subsequently, the information content of each
feature vector is computed by summing the information con-
tent of the dictionary atoms that participate in its reconstruc-
tion. The feature vectors are then classified as background
vectors if their information content falls below an automati-
cally derived threshold. For more information, the reader is
referred to [1].

At a next step, all the vectors that were classified as back-
ground, are used to learn a new dictionary of 64 atoms (3-
sparse representation again). This new dictionary is then
used to reconstruct all the feature vectors of the audio record-
ing. It is expected that the reconstruction error will increase
significantly whenever non-background vectors are encoun-
tered and fall rapidly whenever the background signal is re-
constructed. Due to the stochastic initialisation of the KSVD
algorithm and the inherent difficulty in computing a global
threshold that will decide which frames belong to the back-
ground, the whole procedure has to be repeated several times
(20 times in our system) and the average reconstruction error
is computed for each frame. Let r = {ri, i = 1, . . . ,M} be
the resulting sequence of reconstruction errors, where M is
the length of the feature sequence. An example is shown in
Figure 1.

Subsequently, an onset detector is applied on sequence r.
The onset detector is a sliding window, 0.1 s long (9 frames in
our system implementation), which is centred at each frame
and serves as a detector of abrupt changes. Assuming that
the onset detector is centred at the n-th frame, the sliding
window covers frames

x(n− 4), x(n− 3), . . . , x(n), x(n+ 1), . . . , x(n+ 4)
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Figure 1: Sequence of reconstruction errors for an audio
recording of the development dataset.

The quantity

s(n) =

4∑
k=1

x(n+ k)−
4∑

k=1

x(n− k)

is then computed. Increasing values of s(n) indicate that the
sliding window enters an audio event. Accordingly, decreas-
ing values signal the offset of the event. Therefore zero cross-
ings are expected to be encountered in the middle of events.
An example of sequence s is shown in Figure 2.
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Figure 2: Sequence at the output of the onset detector when
the input is the error sequence of Figure 1.

Sequence s is noisy and needs to be filtered. To denoise
it, we use clipping. The clipping threshold is computed as
follows: the maxima of | s | are detected and are sorted in
descending order. The resulting sorted sequence (Figure 3)

exhibits a “knee”. The location of the “knee” is automati-
cally detected using a standard slope-based method and the
value at the “knee” is clipping threshold for s. Let c be the
clipped version of s. Figure 4 shows the clipping threshold
superimposed on s.
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Figure 3: Height of sorted peaks of sequence s. A “knee”
can be observed.

The clipped sequence c is then scanned from left to right
to detect segments consisting mainly of non-zero values.
Here, the term “mainly” refers to the fact that we permit
small gaps of zeros to be part of a segment. In our system,
such gaps can be at most 0.2 s long. This is because a lot of
audio events exhibit such signal discontinuities at the frame
level.

Finally, segments shorter than 60 ms are discarded. In
addition, any segment that does not contain at least 6 frames
whose clipped reconstruction error exceeds three times the
computed threshold is discarded. This last post-processing
stage aims at discarding segments that survived the clipping
threshold marginally. This is why a higher threshold is im-
posed this time. If this higher threshold is applied at the first
place, unwanted over segmentation will occur due to formed
gaps. This is why it is preferable to start with a more conser-
vative threshold, let segments with small gaps be formed and
then apply the final higher threshold to filter out results.

1.2. Classifier

The output of the segmenter is a sequence of segments, i.e., a
sequence of pairs of endpoints. Let Ti be the subsequence of
feature vectors of the initial recording that lie between a pair
of endpoints. Ti is treated as an unknown template that will
be matched (aligned) against the bark band representations
of all reference templates, Pj , j = 1, . . . , 240 of the train-
ing set. The adopted alignment algorithm is the well-known
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Figure 4: Onset function, s, and clipping threshold. For the
sake of clarity of presentation only part of the sequence is
shown on both axes.

Smith-Waterman algorithm [3]. We use the cosine of the an-
gle of two feature vectors as a local similarity measure. To
speed up computations, the search range for node predeces-
sors horizontally and vertically is limited to 5 frames. The
gap penalty is set equal to 1/3 after experimentation. Each
alignment returns a similarity score, Sij , i = 1, . . . , Ls and
j = 1, . . . , 240, where Ls is the number of segments at the
output of the segmenter. This idea was investigated by the
authors in [4] in the context of event detection in soundtracks
from movies.

To test if Sij is a significant result, each Pj is shuffled
30 times and each random permutation is aligned against Ti.
The mean score over these runs is then computed. This pro-
cedure is repeated by producing 30 random permutations of
Ti and aligning each permutation with Pj . A second mean
score is computed and the highest of the two mean scores is
considered to be a good approximation of a random align-
ment score, nij , which is subsequently subtracted from Sij

to yield the final matching score, Sij − nij , of Ti against
Pj . After this score is computed for all 240 templates, Ti is
classified to the class of the highest score.

2. PERFORMANCE EVALUATION

The method was tested on the development dataset of the
challenge that consists of 18, 2 min long uninterrupted au-
dio recordings. The performance measures were computed
based on the script provided by the organisers and are listed
in Table 1. It follows that the segment and event based val-
ues of the F-measure of the proposed method outperform the
baseline algorithm by 23.5% and 32.2%, respectively. Sim-
ilarly, the Error Rates drops by 27.8 percentage units in the
segment-based case and is equal to 51.85% in the event based

evaluation.

Table 1: Performance of the proposed method (baseline re-
sults in parentheses).

Segment-based Event-based
Pre: 0.7570 0.7385
Rec: 0.5545 0.5421
F: 0.6401 (0.416) 0.6252 (0.303)

ER: 0.5075 (0.7859) 0.5185
S: 0.1161 0.1313
D: 0.3294 0.3266
I: 0.0620 0.0606

3. CONCLUSIONS

We submitted and presented a two-stage method for sound
event detection in synthetic audio which does not rely on su-
pervised machine learning techniques and separates the seg-
menter from the classifier. The segmenter is based on un-
supervised learning and the classifier is a template matching
scheme that operates on sequences of multi-dimensional fea-
ture vectors and uses random permutations of the feature se-
quences to estimate the significance of the returned results.
Compared to the provided baseline method, the proposed
scheme exhibits promising performance.
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