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ABSTRACT
This paper presents the methodology we have followed for our sub-
mission at the DCASE 2016 competition on acoustic scene classi-
fication (Task 1). The approach is based on a supervised feature
learning technique which is built upon matrix factorization of time-
frequency representation of an audio scene. As an original contri-
bution, we have introduced a non-negative supervised matrix factor-
ization that helps in learning discriminative codes. Our experiments
have shown that these supervised features perform slightly better
than convolutional neural networks for this challenge. In addition,
when they are coupled with some hand-crafted features such as his-
togram of gradient, their performances are further boosted.

Index Terms— feature learning, matrix factorization, his-
togram of gradient.

1. INTRODUCTION

Audio scene classification is a complex problem which aims at iden-
tifying acoustic environments solely based on audio recordings of
the scene. The scenes we are interested in can be defined accord-
ing to some geographical contexts (beach, park, etc...), some social
situations in indoor or outdoor locations (restaurant, office, home,
market, library, ..) or according to some ground transportations (car,
bus, tramway, ...). Being able to accurately recognize such scenes is
relevant for applications in which context awareness is of primary
importance.

In the last decade, advances in the state-of-the-art in this do-
main were few but a steady increase of studies occured in the last
years. Novel approaches for addressing this problem of acoustic
scene classification have flourished and then have been essentially
fueled by the release of open and established datasets for bench-
marking. These datasets include the one used for the challenge
DCASE 2013 [1] and the LITIS Rouen Audio scene dataset [2]. For
this DCASE 2016 Challenge, a novel dataset for audio scene clas-
sification [3] has been released for further fostering development of
novel methodologies.

Leveraging on this novel dataset, this paper presents our
methodology for classifying acoustic scenes. The method is based
on learning features from time-frequency representation of audio
scene through a supervised non-negative matrix factorization strat-
egy. This supervision is achieved by augmenting the optimization
problem in the non-negative matrix factorization with a term that
induces the decomposition to be discriminative in some sense. Our
experimental results show that the approach we propose is favorably
competitive compared to convolutional neural networks and the best
result we achieve is obtained by combining these supervised NMF
features with some HOG features.

2. METHOD

2.1. The dataset

The data we have to deal with are composed of 30s audio scenes
acquired in different places. Our objective is to learn from some
labeled examples of audio scene the place where they have been
acquired. In the dataset available for developing the methodology,
78 segments of 30s are available per location. In addition, some
specific folds defining 4 sets of training and validation are provided.
All the results presented in here are obtained as an average accuracy
over the 4 fold.

2.2. Machine Learning Pipeline

The approach we have developed for solving this task is to cast it
as a machine learning problem where each of the labeled acoustic
scene is considered as a single example. Hence, as in many ma-
chine learning tasks, the most difficult problem is to design some
features that are able to grasp specificities of each acoustic scene
class while preserving discriminative power. In order to cope with
this problem, we propose in this work a supervised non-negative
factorization technique that allows to learn features.

2.2.1. Time-Frequency representation of acoustic scenes

The first transformations we apply to each acoustic scene signal are
the following

• the stereo signal is averaged over the two channels and normal-
ized to unit energy.

• a log mel-frequency representation is obtained from this signal.
The frequency span ranges from 0 to the half of the sampling
rate. The number of spectral bands we considered is 70 and
they are computed over windows of size 25 ms with hops of 10
ms. At this point, each acoustic scene can be represented as a
matrix of size 70× 2998.

2.2.2. Supervised Matrix Factorization

Our objective in this part is to learn features by leveraging on the
labeled examples. Given a particular fold, we have 880 of them in
the training set.

We have considered two different strategies : the first one based
on convolutional neural networks (CNNs) and the second one, de-
scribed in the sequel based on supervised matrix factorization. We
note that the CNNs approach perform just slightly worse than our
supervised matrix factorization method on this dataset but performs
better on dataset with a larger amount of training examples.
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The idea of non-negative matrix factorization is to find some
limited number of positive dictionary elements so that each mel-
frequency slice of a given acoustic scene can be represented as pos-
itive combination of these elements. Basically, this problem is for-
malized as the following optimization problem

min
D≥0,A≥0

1

2
‖S−DA‖22 (1)

where in our case, S is the matrix obtained from the concatena-
tion of the mel-frequency representations of all signals, leading to a
matrix of size 70 × (2998 × 880), D is the matrix containing the
discriminative dictionary elements and A is the coefficient matrix
allowing to reconstruct S from D.

Our objective is to learn discriminative code so that the coeffi-
cient matrix A brings information about class labels in addition to
reconstruction information.

For this purpose, we introduce a matrix C of size K × N , K
being the number of dictionary elements and N the number of ele-
ments to decompose (the columns of S). The objective of C is to
drive the coefficients in matrix A to be aligned, in some sense to
be defined, to class labels. We achieve this goal by considering that
a given dictionary element should be used only for approximating
mel-frequency representation of one class of acoustic scene.

For a sake of clarity, suppose thatK is a multiple of the number
of class, and that the (i − 1)K

m
+ 1 to iK

m
dictionary elements are

related to class i. Hence, each entry ci,j is so that ci,j = 1 if the j-th
mel-frequency slice belongs to an acoustic scene of class c and for
all i ∈ [(c − 1)K

m
+ 1, cK

m
]. As an example, if we have a problem

with 9 mel-frequency slice ordered in classes, 3 different classes
and 6 dictionary elements to be learn, C writes

C =


1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1


The two first dictionary elements (rows 1 and 2) are devoted to sig-
nals from the first class and so on. Hence, C is a rank m matrix
which bears class information owing to the assignment of a given
dictionary element to one given class. Hence, the supervised NMF
problem we want to solve is now

min
D≥0,A≥0

1

2
‖S−DA‖22 +

1

2
‖C−RA‖22 (2)

where R is a matrix of size K ×K. Note that the objective value
of this optimization problem balances two terms : one that aims at
reconstructing each mel-frequency slice as a positive combination
of the dictionary elements and another one which goal is to make
coefficients in the matrix A to be aligned with some label informa-
tion.

For feature extraction purposes, once the dictionary D is
learned, time-frequency representation of each acoustic scene is de-
composed on the non-negative dictionary elements by proceeding
slice per slice resulting in a matrix A of size K × 2998 represent-
ing the acoustic scene over the dictionary.

2.2.3. Pooling

The pooling step aims at creating a sketch of the matrix K × 2998
by computing some statistics. These statistics are afterwards used

Features AverPrec(%) Accuracy (%)
rqa 69.09 67.06
hog 78.96 75.04
cnn 80.56 78.46
nmf 81.29 79.74
hogrqa 79.34 75.55
cnnrqa 80.78 78.96
cnnhog 83.28 80.93
cnnhogrqa 82.79 80.59
nmfrqa 81.84 80.08
nmfhog 84.08 81.19
nmfcnn 80.41 78.37
nmfhogrqa 84.05 81.19

Table 1: Mean over the 4 folds of Average Precision and accuracy
using different single features and concatenation of features.

as feature vector for a classifier. In our approach, these statistics
are obtained through an integration over the temporal context of
the acoustic scene. For instance, we have considered the temporal
average and standard deviation over A, leading thus to a feature
vector of size 2K. We have also investigated a temporal maximum
pooling as well as the concatenation of these two kinds of feature
vector.

2.2.4. Classifier

After unit-norm normalization, feature vectors are fed to a
Gaussian kernel SVM classifier for learning a decision func-
tion. We used a one-vs-one multi-class strategy. The C pa-
rameter of the SVM is selected among 8 values logarithmically
scaled between 0.01 and 1000 while the parameter σ of the
Gaussian kernel k(x,x′) = exp

(
− ‖x−x′‖22

2σ2

)
is chosen among

[0.5, 1, 5, 10, 20, 30, 50, 70, 100, 120].

2.2.5. Enriching features

Supervised matrix factorization followed by pooling or a convo-
lutional neural networks are optimized to detect specific patterns
in the time-frequency representations of acoustic scenes. As such,
they may lack in uncovering discriminative events that are not re-
lated to time-frequency structures.

Based on this rationale, we have considered enriching features
extracted from supervised matrix factorization with other ones that
have been recently deployed for acoustic scene classification. In a
very basic way, we have computed histogram of gradient [2] fea-
tures on the time-frequency representations and recurrence quanti-
tative analysis [4] features and concatenated them to the supervised
matrix factorization features.

3. NUMERICAL EXPERIMENTS

We have investigated how the above features perform on the
DCASE 2016 dataset Task 1. Averaged results over the 4 fold are
reported in Table 1.

First part of the table reports results obtained using single set
of features. We can note that using RQA-based features do not
perform better than the 72.5% accuracy achieved by the baseline
system (MFCC+GMM) described in [3] despite it was the winning
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entry for the DCASE 2013 competition [4] . HOG-based features
yield about 75.0% accuracy and provide performances consistent
with those reported in [2] compared to MFCC and RQA.

The results we report for our supervised matrix factorization
have been obtained by concatenating max pooling codes as well as
average and standard deviation codes. Compared to hand-designed
features, learned features either using CNNs or SNMF yield to a
gain of more than 3% of accuracy compared to HOG. Interest-
ingly, CNNs generalize slightly worse than our SNMF. This fact
can be eventually explained by the small amount of training exam-
ples available (880) for each fold.

The second part of the table provides different results obtained
through combination (concatenation) of features. In particular, we
have combined learned features with the two hand-crafted ones
which have been designed to capture different characteristics of
the acoustic scenes. We note that these features provide additional
discriminative information to those brought by CNNs and SNMF.
Indeed, fusing all these features always yield to improved perfor-
mances. According to our results, HOG is the best complement to
our learned features yielding to an accuracy of respectively 80.93%
and 81.19 with CNNs and SNMF.

According to these findings on the development set, for the
challenge, we have submitted to results obtained from the concate-
nation of SNMF and HOG features. At this point, one remaining
question is still to be answered : should we use results obtained
from the best fold (with optimized hyperparameters) or use results
obtained by selecting the best hyperparameters on average? Since
multiple submissions were allowed, the decision was to make no de-
cisions and submit both. Interestingly, when looking at the details,
these two approaches disagree on 50 examples over the 390 test ex-
amples, which can correspond to a variation of 12.5% accuracy in
the worst case !

4. CONCLUSION

We have presented in this technical report, our machine learning
pipeline for addressing the acoustic scene classification problem.
We have proposed a supervised feature learning approach based on
a variant of a non-negative matrix factorization technique, which in
the particular case of this challenge, performs slighlty better than
a convolutional neural networks. In addition, we have shown that
if those learned features are combined with some hand-designed
features such as histogram of gradient, which capture information
about variation of spectral energy, then the ability of our pipeline to
recognize acoustic scenes are further enhanced.
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