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ABSTRACT

This contribution reports on the performance of systems for

polyphonic acoustic event detection (AED) compared within the

framework of the “detection and classification of acoustic scenes

and events 2016” (DCASE’16) challenge. State-of-the-art Gaussian

mixture model (GMM) and GMM-hidden Markov model (HMM)

approaches are applied using Mel-frequency cepstral coefficients

(MFCCs) and Gabor filterbank (GFB) features and a non-negative

matrix factorization (NMF) based system. Furthermore, tandem and

hybrid deep neural network (DNN)-HMM systems are adopted. All

HMM systems that usually are of multiclass type, i.e., systems that

just output one label per time segment from a set of possible classes,

are extended to binary classification systems that are compound of

single binary classifiers classifying between target and non-target

classes and, thus, are capable of multi labeling. These systems

are evaluated for the data of residential areas of Task 3 from the

DCASE’16 challenge. It is shown, that the DNN based system per-

forms worse than the traditional systems for this task. Best results

are achieved using GFB features in combination with a multiclass

GMM-HMM approach.

Index Terms— acoustic event detection, DCASE’16, Gabor

filterbank, deep neural network

1. INTRODUCTION

Acoustic event detection (AED) denotes the automatic identifica-

tion of sound events in audio signals. Commonly, the the acoustic

event’s category as well as its time of occurrence are to be recog-

nized. Application fields for AED are e.g., surveillance of public

spaces for security issues [1–3], monitoring of health states e.g. in

care systems [4–6] or condition monitoring of technical systems,

cf., e.g., [7, 8].

AED in monophonic environments, i.e., for settings in which

just single, isolated acoustic sources are active for a given time

interval, has been the main focus of research in the past, with

prominent comparisons of competitive systems in, e.g., the “clas-

sification of events, activities and relationships” (CLEAR’07) and

“detection and classification of acoustic scenes and events 2013”

(DCASE’13) challenges. Established methods for detecting acous-

tic events in monophonic environments are often based on Mel-

frequency cepstral coefficient (MFCC) features and hidden Markov
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models (HMMs) using Gaussian mixture models (GMMs) as obser-

vation probability functions (GMM-HMM) [9–11]. These systems

are denoted as multiclass classification systems since for a certain

time segment they select one and only one label from a set of pre-

trained classes based on maximum likelihood criteria or compara-

ble scores. However, in many realistic environments rarely just a

single source is active per time instance. Instead, usually multi-

ple sources emit sound waves simultaneously leading to a mixed

sound signal at a receiver. This case of multiple and overlapping

sound signals is commonly referred to as polyphony. For acoustic

event detection systems this case is by far more challenging than the

monophonic case, not only because of the pure signal mixture of an

unknown number of acoustic events present in the signal but also

because training and test data can be considerably different due to

the vast number of possibilities of event mixtures. Recently, poly-

phonic acoustic event detection has gained considerable attention,

e.g., by being addressed to in the DCASE’16 challenge. Some ap-

proaches for polyphonic event detection are based on MFCC and

GMM-HMM classifiers. Using these back-ends, either binary clas-

sification between target events and universal background model is

performed [12] or classification on multiple streams separated by

non-negative matrix factorization (NMF) is conducted [11]. Further

approaches apply NMF as part of feature extraction by thresholding

the activations of the source code book [13, 14]. In recent publi-

cations, deep neural networks (DNNs) are used [3, 15, 16]. The

output of the DNNs replaces the NMF-features, while the classifi-

cation out continues to rely on thresholded the feature values. In

the field of automatic speech recognition (ASR), DNNs are well-

established and constitute the state-of-the-art baseline. Incorpora-

tion into recognition systems is based on two paradigms, tandem

and hybrid approaches [17]. For the tandem approach, DNN fea-

tures replace the MFCC features while the back-end is a conven-

tional GMM-HMM classifier. Commonly, bottleneck features are

used, for which one layer of the DNN acts as “bottlenceck” with

only a small number of neurons compared to the preceding and sub-

sequent layers [17]. The hybrid approach uses DNNs as observation

functions replacing the GMMs leading to DNN-HMM back-ends.

They can be used with any kind of features. A common observation

with DNNs is that they need more training data than for example

GMM-HMM systems with MFCCs features.

This paper describes the authors contribution to the DCASE’16

challenge. It focuses on the subtask of Task 3 containing acoustic

data recorded in residential environments (cf. Section 2). We in-

vestigate the performance of GMM-HMM systems using MFCCs

and Gabor filterbank (GFB) features, the best scoring system of the

DCASE’13 challenge, as well as NMF. Furthermore, we show the
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Table 1: Event statistics of Task 3 for the residential area. Given are

the number of events (‘num. ev.’), the average duration (‘av. dur.’)

and the total duration (‘tot. dur.’) of each class individually and

overall.

num. ev. av. dur. [s] tot. dur. [s]

bird singing 130 7.55± 25.19 981.21
car passing by 57 9.16 ± 4.81 521.94

children shouting 23 2.00 ± 1.68 46.16
object banging 15 0.76 ± 0.70 11.33

people speaking 40 8.08± 24.42 323.08

people walking 32 5.50 ± 5.94 176.11

wind blowing 22 6.09 ± 5.98 133.96

overall 319 6.88± 18.59 2193.79

performance of DNN tandem and hybrid approaches. Binary and

multiclass classification systems are used.

The remaining of this paper is structured as follows. The exper-

imental setup including the dataset ‘residential area’ of Task 3 from

the DCASE’16 challenge is outlined in Section 2. The concept of

multiclass and binary systems is explained in Section 3. The indi-

vidual classification systems are detailed in Section 4. The results

for these systems are shown in Section 5. Conclusions are drawn in

Section 6.

2. EXPERIMENTAL SETUP

The following experiments are based on the setup and data of Task 3

of the DCASE’16 challenge [18]. Task 3, called ‘Sound event

detection in real life audio’, consists of stereo data recorded at

44.1 kHz and in a home environment and in a residential area. Just

the first channel is used in our contribution. The dataset of the

home environment comprises eleven classes of a total duration of

36 min whilst the dataset of the residential area is compound of

seven classes and a total duration of 42 min. Since these are rela-

tively few data especially for training of DNNs, we will just show

results for the larger subset ‘residential area’. Details of this subset

are given in Table 1. The proposed cross-validation sets from the

challenge are used as well as the evaluation measures F-Score and

the acoustic event error rate (AEER) [18]. The F-ScoreF represents

the relation between the precision P and the recall R, i.e.,

P =
Ncorr

Nest

; R =
Ncorr

Nref

; F =
2 · P ·R
P +R

, (1)

where Ncorr denotes the number of correct hits, Nest the number

of estimated events and Nref the number of reference events. The

AEER is the sum of insertions I , deletions D and substitutions S

relative to the number of reference events Nref, i.e.

AEER =
I +D + S

Nref

. (2)

Both measures are applied on 1 sec segments and averaged over all

crossvalidation folds.

3. MULTICLASS AND BINARY SYSTEMS

For detecting events, two main classification systems will be tested:

Multiclass classification and binary classification systems. A mul-

e.
g
.

M
F

C
C

,
G

F
B

,
D

N
N learning

decoding

feature extraction

ytrain
1

ytrain
M

ytest
1

models

label

back-end

Figure 1: General schematic of the applied classification systems.

ticlass classification system consists of multiple models for differ-

ent classes. The model yielding highest probability for a time seg-

ment is selected as label. Thus, such approaches are not capable of

detecting simultaneous or overlapping events. Commonly, HMM

systems are multiclass classification systems. To overcome this dis-

advantage and get multiple labels per time segment, the multiclass

systems can be extended to binary classification systems. A single

binary classifier consist of a target class model and a garbage or

background model that covers all non-target classes. Hence, a com-

pound of such binary classifiers in a classifiction system is able to

label each time segment with multiple labels.

4. CLASSIFICATION SYSTEMS

The commonly applied classification systems consist of a fea-

ture extraction step and a back-end (cf. Figure 1). In the training

phase, the extracted features, e.g. MFCCs, GFB features, DNN fea-

tures etc., are used to create class models for the back-end that can

be, e.g., HMMs. In the testing phase, these models are applied to

the extracted features of the test data to decode it and output labels

for time segments. The adopted systems of this contribution will be

detailed in the following.

4.1. Baseline System

As baseline we use the provided baseline system from Task 3 of the

DCASE’16 challenge [18]. It is composed of a GMM model using

MFCCs. The MFCC features use 40 ms windows with 50% shift.

The first 19 coefficients and the 0th energy coefficient plus deriva-

tions of first (∆) and second order (∆∆) are used, that are computed

over 9 time frames. The GMM is based on 16 Gaussian mixtures

per class model and is applied on sliding windows of 1 second. The

baseline is just applied in a binary classification system.

4.2. NMF System

The NMF system is based on the baseline system of Task 2 of the

DCASE’16 challenge. It uses variable Q-transform (VQT) spec-

trograms of 60 bins per octave and a step size of 10 ms. The NMF

codebook consists of 20 spectral templates per class that are learned

during a training phase. For the original baseline, the 20 spectral

templates were generated by averaging the delivered 20 event files
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Table 2: Results of Task 3 for the residential area. In each row, the performance of the respective system is given in terms of AEER and

F-Score. Both measures are divided into the total average and the class-wise average. A check mark in column ‘multi label’ indicates that

the system is capable of making multi label outputs, e.g. the binary systems, otherwise systems produce single label output as for multiclass

systems. For DNN features, the underlying features are given in brackets. Note: The baseline system uses other parameters for MFCCs than

the other MFCC based systems depicted in rows 3, 4, 7, 8, 10 and 11. Best scores are highlighted by bold numbers.

no. multi- back-end feature AEER F-Score [%]
label total class total class

1
√

baseline MFCC 0.86 1.16 34.6 19.9
2

√
NMF VQT 1.35 2.11 14.8 8.7

3 GMM-HMM MFCC 0.77 1.02 41.2 15.8
4

√
GMM-HMM MFCC 0.81 1.08 41.0 16.6

5 DNN-HMM log-Mel 1.02 3.47 17.2 8.5
6

√
DNN-HMM log-Mel 1.78 5.87 16.0 13.3

7 DNN-HMM MFCC 1.04 3.75 10.7 7.9
8

√
DNN-HMM MFCC 1.22 2.86 22.6 14.7

9
√

GMM-HMM DNN(log-Mel) 2.17 6.23 28.6 19.6
10

√
GMM-HMM DNN(MFCC) 1.87 6.08 30.8 18.8

11
√

GMM-HMM MFCC+DNN(log-Mel) 2.37 5.89 32.4 24.1

12 GMM-HMM GFB 0.74 1.01 48.5 19.2
13

√
GMM-HMM GFB 0.93 1.44 44.2 17.6

per class. Hence, the codebook size depended on the amount of

files. To avoid the dependency on the dataset size, we modified

the training phase by applying a GMM to the complete spectrogram

data of each class to create the desired number of spectral templates.

Based on these templates, data is decoded by a NMF. The NMF

output is postprocessed using a threshold (1.0), a minimum event

length of 60 ms and a maximum number of concurrent events (5).

4.3. DNN-HMM Hybrid System

For the DNN-HMM hybrid system, the commonly applied GMM

observation function of an HMM is replaced by a DNN. The HMM

for each class is modeled by one transition state. Viterbi-decoding

is applied with multiple repetitions of events per file to get time seg-

ment labels. The input layer consists of the current time frame plus

4 frames before and after, thus, extending the feature dimensionality

by a factor of 9. Several different number of layers, number of neu-

rons per layer and characteristics like a bottleneck have been tested.

Here, only the results of the DNN yielding best performance using

three hidden layers with 128, 20, and 39 neurons will be shown.

The hidden layers use the rectified linear unit (ReLU) as activation

function, whilst the output function applies the softmax function.

Two types of features are investigated. One feature type is based

on static MFCCs, i.e., a window length of 25 ms and 10 ms shift is

used to compute the twelve first coefficients as well as the 0th. The

other feature type is a logarithmic Mel (log-Mel)-spectrogam with

40 frequency bins (window length of 25 ms and shift of 10 ms).

4.4. GMM-HMM Sytem

The GMM-HMM systems use GMMs as observation functions for

HMMs. The HMM of each class is modeled by one transition state,

i.e., it is actually a GMM. The best number of mixtures is eval-

uated on the validation fold, i.e., the performance of the mixture

yielding the best total performance will be shown. In contrast to the

baseline, the decoding is done using Viterbi-decoding with multiple

repetitions of events per file.

Several different features are used for this system. Basic

MFCCs as for the DNN-HMM hybrid system (cf. Section 4.3) with

additional ∆ and ∆∆ features. Another feature type is based on the

GFB. The GMM-HMM(GFB) system [19] achieved highest perfor-

mance on the previous DCASE’13 challenge [20]. Here we use the

GFB optimized for AED that has been shown to improve the results

for the acdcase2013 challenge [21].

Furthermore, features are derived from DNNs, thus building a

tandem system. Therefore, the DNNs of the hybrid systems are

applied, and, hence, are either based on MFCCs or on the log-Mel-

spectrogram. The hybrid DNNs are modified by deleting the output

layer that represents the class probabilities, and replacing it by the

second last layer containing 39 neurons. Furthermore, the activation

function ReLU is replaced by a linear activation function to produce

features with better discriminative abilities [22]. We used HTK [22]

to adopt HMMs and DNNs.

5. RESULTS

The results of the tested systems are given in Table 2. The AEER

and the F-Score are shown. They are divided into a total average

over all frames and into a class-wise average, i.e., the score for each

class is computed and the average of these numbers are depicted.

Hence, effects on scores resulting from different amount of data per

class are avoided. Each row describes a system. A check mark

(
√

) in column ‘multi label’ indicates that a system has multi label

output, which are the baseline system, the NMF system and the

binary versions of the HMM approaches. No check mark indicates

that a system has single label output, which are the multiclass HMM

versions.

It can be seen that the NMF based system (cf. Row 2), which is

the baseline system of Task 2 of the DCASE’16 challenge, performs

relatively poor compared to the GMM(MFCC) baseline (Row 1).

On the one hand, this results from the polyphonic training data.

Commonly, the training data for NMF approaches consist of iso-

lated events. However, the data for Task 3 was polyphonic. Thus, a

proper codebook is unlikely to be generated leading to much confu-
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sion between classes. On the other hand, being the baseline system

of Task 2, the used parameters for the classifier may not be optimal

for Task 3.

The GMM-HMM-systems using MFCCs (cf. Rows 3 and 4)

achieve better results for the AEER and for the total F-Score. For

the class-wise F-Score, they are slightly worse. This is a result of the

unequal amount of data per class. Both GMM-HMM-systems are

particularly good in recognition of the classes with most data ‘bird

singing’ and ‘car passing by’. For class ‘bird singing’, the multi-

class GMM-HMM-systems (cf. Row 3) yields a class-wise F-Score

of 56.3% whereas the baseline yields F-Score of 35.5%. This im-

balance leads to a better total F-Score for the GMM-HMM-systems

but a worse class-wise F-Score than for the baseline.

Against expectation, the multiclass approach of the GMM-

HMM-system yields better performance than the binary approach,

though the multiclass approach is not capable of detecting multiple

overlapping events and, thus, in contrast to the binary approach, by

its nature can never yield 100% accuracy. For the applied dataset,

it seems to be beneficial to just output one label with maximum

likelihood than to try to detect multiple concurrent events.

However, for the DNN-HMM hybrid systems (cf. Rows 5

to 8), the binary versions yield better F-Scores than the multi-

class systems. In comparison to the baseline, they perform worse

for all shown measures. The tandem systems (cf. Rows 9 to 11)

yield worse AEER scores. However, the F-Scores are relatively

high. For the system with concatenated MFCC and DNN features

(cf. Row 11), even the highest class-wise F-Score of all examined

systems is achieved. The reason for the low AEER but high F-Score

lies in the high number of label outputs that are generated by the tan-

dem system. It causes many errors but also a high recall R forcing

a relative high F-Score.

The best scores except for the class-wise F-Score are achieved

by the multiclass GMM-HMM with GFB features (cf. Row 12).

Especially the total F-Score is much higher than for all other

tested systems. Similar to the GMM-HMM-systems using MFCCs

(cf. Row 4), the binary version of the GMM-HMM system adopting

GFB features (cf. Row 13) performs less good than the multiclass

version.

6. CONCLUSIONS

This study reports system performances for different acoustic event

detection strategies applied to Task 3 (‘residential area’ data) of the

DCASE’16 challenge. We compared commonly used GMM sys-

tems to tandem and hybrid DNN systems. Multiclass and binary

systems were applied. We showed that for this task, DNNs are less

accurate than GMM-HMM systems. Probably, the amount of data

available for Task 3 is too low to train DNNs properly. The GMM-

HMM system in combination with GFB features which was devel-

oped for the DCASE’13 challenge [19] for isolated events and that

was meanwhile improved as described in [21], yields best perfor-

mance of all tested systems. Furthermore, a multiclass system that

is just capable to output one label per time segment seems not to be

inferior to a binary classification system for polyphonic data.

A drawback for all classification systems is the little amount of

available data within this challenge. As it could be observed, the

two classes with most data, which are ‘bird singing’ and ‘car pass-

ing by’, achieved best recognition results for nearly all classification

systems. Testing the approaches on larger corpora is thus subject of

future work.
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