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ABSTRACT
This workshop paper presents our contribution for the acoustic scene
classification (ASC) task proposed for the “detection and classification
of acoustic scenes and events” (DCASE) 2016 challenge. We propose
the use of a convolutional neural network trained to classify short
sequences of audio, represented by their log-mel spectrogram. We
also propose a training method that can be used when the system
validation performance saturates as the training proceeds. The system
is evaluated on the public ASC development dataset provided for the
DCASE 2016 challenge. The best accuracy score obtained by our
system on a four-fold cross-validation setup is 79.0% which constitutes
a 8.8% relative improvement with respect to the baseline system.

Index Terms— Acoustic scene classification, convolutional neu-
ral networks, DCASE, computational audio processing

1. INTRODUCTION

When we talk of ASC we refer to the capability of a human or an
artificial system to understand an audio context, either from an on-line
stream or from a recording. “Context” or “scene” are concepts that
humans commonly use to identify a particular acoustic environment,
i.e. the ensamble of background noises and sound events that we
associate to a specific audio scenario, like a restaurant or a park. For
humans this may look like a simple task: complex calculations that
our brain is able to perform and our extensive life experiences allow
us to easily associate these ensembles of sounds to specific scenes.
However, this task is not trivial for artificial systems. The interest
in computational ASC lies in its many possible applications, like
context-aware computation [1], intelligent wearable interfaces [2]
and mobile robot navigation [3]. In the field of machine learning
different models and audio feature representations have been proposed
to deal with this task, especially in the last few years, thanks to the
contributions to the previous DCASE challenge in 2013 [4]. Some
examples of classifiers used in the previous challenge are Gaussian
mixture models (GMMs) [5], support vector machines [6] and tree
bagger classifiers [7].

Nowadays, application of convolutional neural networks (CNNs)
for audio-related tasks is becoming more and more widespread, for
example in speech recognition [8], environmental sound classifica-
tion [9] and robust audio event recognition [10]. To the best of our
knowledge this is the first work introducing a CNN-based classifier
specifically designed for ASC.

Our system is designed to output class prediction scores for short
audio sequences. During training a recently-proposed regularization
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technique is used, i.e. batch normalization. In addition, we propose
a training procedure that will allow the classifier to achieve a good
generalizing performance on the development dataset. Hence our
intent is to propose a system capable of improving the baseline system,
represented by a GMM [11] classifier, and to give a novel contribution
for future development in the use of neural networks for the ASC task.

In Section 2 a brief background about CNNs is given. Then, a
detailed description of the proposed system is reported in Section 3.
Finally, results for the proposed model and comparisons between
different configurations are presented in Section 4 and our conclusions
are reported in Section 5.

2. CONVOLUTIONAL NEURAL NETWORKS

In a CNN inputs are processed by small computational units (neurons)
organized in a layered structure. The most remarkable feature that
makes CNNs a particular subset of feed-forward neural networks
is the presence of convolutional layers. Convolutional layers are
characterized by neurons (called kernels) that perform subsequent non-
linear filtering operations along small context windows of the input,
i.e. their receptive fields (RFs). This localized filtering is a feature
known as local connectivity and it represents one key characteristic for
obtaining invariance against input pattern shifts. Parameters defining
the RF are its width (L), height (H), depth (D) and stride. The area
(L×H) defines the dimension of the kernel’s context window and
the stride defines how much this window will slide between two
filtering operations. Both area and stride are free parameters, whereas
the depth is the same as the input’s. For example, if the input is a
three-channel (RGB) picture the network will be fed with a tensor
with depth D = 3. In an audio analysis scenario the input can be
a spectrogram, represented by a bi-dimensional matrix, which has
unitary depth dimension (D = 1). Moreover, if the convolutional
layer is acting on the output of another convolutional layer, then D
will be equal to the number of kernels of the former layer.

Non-linear filtering consists of two steps. In the first place an out-
put is calculated through a linear combination of each pixel currently
seen by the RF. Then, this output is fed into a non-linear function, i.e.
the activation function. Activation functions that are typically used are
the sigmoid, the hyperbolic tangent or the rectifier function. Finally,
subsequent kernel outputs are collected in matrices that are called
feature maps.

Pooling layers are usually placed after each convolutional layer
to reduce each feature map dimensions and to enhance the network
invariance to input pattern shifts. The most common pooling layer
is formed by filters that operate with non-overlapping windows by
extracting the highest value from the area, i.e. max-pooling. Therefore,
the stacking of multiple convolutional and pooling layers will make
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Figure 1: Block diagram of the proposed method.

the network able to extract features with a gradual increment of the
input overview. The output layer is usually a fully-connected softmax
layer. So, if we define yi as the output of neuron i in the last layer we
will have:

yi = softmax(xi) =
exp(xi)∑N

j=1(exp(xj))
, (1)

where N is the number of possible classes, xi the input to the non-
linearity and yi the prediction score for the input sequence to belong
to the ith class. Hence the overall output is a vector y containing all
network’s prediction scores associated to each class. If we let yj to be
the highest of these scores, the predicted class for the input sequence
will be the j th class. In order to optimize the network parameters a
comparison between the prediction vector y and a target vector is
performed in terms of a loss function. Typically used loss functions
are the mean squared error or the categorical cross-entropy.

3. PROPOSED METHOD

In this section we describe our method and the architecture chosen
for the proposed system. The main steps are represented as a block
diagram in Figure 1.

3.1. Feature representation and preprocessing

The feature representation we choose for our system is the log-mel
spectrogram. To calculate it we apply a short-time Fourier transform
(STFT) over windows of 40 ms of audio with 50% overlap and Ham-
ming windowing. We then square the absolute value of each bin and
apply a 60-band mel-scale filter bank. Finally, the logarithmic conver-
sion of the mel energies is computed. The whole feature extraction
process has been implemented in Python using the librosa [12] library.

After the extraction process we normalize each bin by subtracting
its mean and dividing by its standard deviation, both calculated on the
whole training set of each fold. We then split normalized spectrograms
into shorter spectrograms, which we will call sequences hereafter.
Tests with different sequence lengths are reported in Section 4. Unlike
frames used for the STFT, we choose sequences to be non-overlapping.
At the end of this process the input to the CNN is a matrix which can
be treated as a mono-channel image.

3.2. Proposed architecture

The proposed model consists of a deep CNN and it is represented
in Figure 2. Parameters we report here are chosen as a result of
experiments aimed to test different kernel numbers and different RF
areas.

The first layer performs a convolution over the input spectrogram
with 128 kernels characterized by 5× 5 RFs and unitary depth and
stride in both dimensions. The obtained feature maps are then sub-
sampled with a max-pooling layer which operates over 5 × 5 non-
overlapping squares. The second convolutional layer is the same as the
first one, with the exception that more kernels (256) are used in order to
grant higher level representation. The second and last sub-sampling is
then performed aiming to the “destruction” of the time axis. Therefore,
we use a max-pooling layer which operates over the entire sequence
length and, on the frequency axis, only over four non-overlapping
frequency bands. The activation function used for kernels in both
convolutional layers is the rectifier function, therefore kernels are
usually called rectifier linear units (ReLUs) [13]. Finally, since the
classification involves 15 different classes, the last is a softmax layer
composed of 15 fully-connected neurons.

The classification for the whole segment is obtained by averaging
all prediction scores obtained for its sequences. Recalling the notation
introduced in Section 2, the CNN output y(i) is now a vector containing
all class-wise prediction scores for the ith sequence. Then, the predicted
class c∗ for the whole segment is calculated as:

c∗ = argmax
c

[
1

M

M∑
i=1

y(i)c

]
, (2)

where M is the number of sequences into which the segment is split
and y(i)c is the cth entry of y(i). In other words, the predicted class
is the position of the maximum entry yc∗ in the vector given by the
average of all prediction vectors output for each sequence.

The system is implemented with the Keras library (vers. 1.0.4) [14]
for Python and its training is performed with an Nvidia Tesla K80
GPU showing an average training time of 50 s per epoch. The loss
function we use for training is the categorical cross-entropy and
the optimization algorithm we choose for its minimization is the
adaptive momentum (adam) [15]. Basing on preliminary experiments
we propose to use the optimizer default parameter configuration.

3.3. Regularization and model training

Batch normalization, introduced in [16], is a technique that addresses
the issue described by Shimoidara et al. [17], known as internal covari-
ate shift. We can look at batch normalization as an intermediate layer
placed after each of the two convolutional layers in order to whiten the
output of such layers. As showed in [16] and in our preliminary exper-
iments, this practice can drastically reduce the training convergence
time. A batch normalization layer applies a linear transformation
BNβ,γ to its input x as follows:

BNβ,γ(x) =
γ√

Var[x] + ε
· x+

(
β − γ · E[x]√

Var[x] + ε

)
, (3)

where E[x] and Var[x] are the mean and the variance of the input
to the batch normalization layer, calculated for a batch of samples.
Moreover, γ and β represent the transformation parameters that will
be learned during training. We use batch normalization to normalize
kernel outputs, therefore we have one γ and one β for each kernel.
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Figure 2: Block scheme of the used convolutional neural network. Max-pooling windows are represented in red, kernel RFs are in light blue.

By using batch normalization we increase the model complexity, but
preliminary experiments showed better performance and a drastic
reduction of the number of epochs needed for training convergence.

The proposed training method consists of two phases. The first,
called non-full training, starts with a splitting of the whole training
data into two subsets: one for training and one for validation. Every
epoch we collect training spectrograms into class-wise feature lists so
to randomly shuffle and time-shift them before the sequence splitting.
This is done in order to increase the input variability, hence showing the
network always slightly different sequence spectrograms. Then, every
five epochs we check the segment-wise performance on both training
and validation sets according to the metrics described in Section 4.
After the check, we save the network parameters if the segment-
wise validation score has improved. Finally, we stop the training if
no improvement is recorded after 100 epochs. With this setup it is
possible to notice that the segment-wise validation performance is
prone to saturate. This means that the score starts to oscillate around
a fixed, stable value. When this happens we say that the system has
converged, therefore it is possible to proceed to the second phase,
which we call full training. In this phase we decide to re-train the
network on all the training data for a fixed number of epochs. This
number is chosen by looking at the convergence time of segment-wise
validation accuracies during the non-full training. A model trained
this way will reach a convergence state without excessive overfit and
making the best of all the available training data. This fact may turn
out to be particularly desirable when dealing with small datasets, such
as in this case.

4. EVALUATION

4.1. Dataset and metrics

For our evaluation we use the DCASE 2016 [11] development dataset
as provided at the beginning of the challenge, when mobile phone
interferences were not annotated. We do not consider this a problem,
since only less than the 1% of the total audio duration is affected. The
dataset consists of 1170 audio segments of thirty seconds, equally
distributed between 15 different classes, and of text files including both
the annotated ground truth and the recommended data subdivision. The
15 classes are: beach, bus, café/restaurant, car, city center, forest path,
grocery store, home, library, metro station, office, park, residential
area, train and tram.

Groups of segments have been obtained by splitting a longer audio
file recorded in a single location. Due to this fact it is important not
to train and evaluate the network performance on segments coming
from the same location, since this would falsify the generalization
score. Because of this, we decide to use the training and test subsets

recommended in the dataset annotations. The train/test split gives
us approximatively 880 training segments for each fold, some folds
having fewer segments. This is due to the fact that different long
recordings have been split into a variable number of segments, ranging
from three to ten. This means that the distribution of per-location
segments is not uniform. Similarly to what was done for the recom-
mended sets, for the training/validation split we decide how many
locations to use for validation and then pick all segments coming from
those locations.

The model is evaluated according to a four-fold cross-validation
scheme. For the evaluation of each fold, per-class accuracies are
initially calculated on the test set on a segment-wise level. These
accuracies are obtained by dividing the number of correctly classified
segments by the total number of segments belonging to the class.
Accuracies for each fold are then obtained by averaging all the 15
per-class accuracies. Finally, the overall accuracy is calculated by
averaging the four per-fold accuracies.

4.2. Classification accuracy and sequence length

Our ability to distinguish different scenes from acoustic information
is influenced by the length of the sequence we can listen to. Hence,
the main focus of this section is a comparison between accuracies
obtained with different sequence lengths. The average convergence
time we estimate, hence the chosen full training period, is 200 epochs.
For full training configurations we compute mean accuracies over
four experiments involving different random weights initializations.
Results we report in Table 1 apparently highlight that medium-length
sequences, like three or five seconds, perform better than extremely
short or long sequences. The best accuracy is achieved by the three-
second configuration, with an average accuracy of 75.9% with the
non-full training configuration. The accuracy rises to 79.0% if full
training is performed.

A deeper insight into which classes are mostly misclassified can
be obtained by looking at the confusion matrix in Figure 3, which we
obtained by grouping results of all folds. What emerges is that some
classes — e.g. “park” and “residential area”, or “bus” and “train” —
are often confused by the system. This may indicate that our model is
relying more on the background noise of the sequence rather then on
acoustic event occurrences. We believe that this can also explain why
classes with very similar background noises are confused even when
30-second sequences are used. Due to results in Table 1, we choose
three seconds as the sequence length used for the challenge evaluation
results. For the final training we use the whole development dataset
and we estimate the new convergence time to be 400 epochs. With this
configuration our model reaches a 86.2% accuracy score, therefore
ranking the sixth place out 57 systems submitted in the first task of
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Table 1: Accuracy comparison for the proposed model trained with
different sequence lengths (seq. len.) and training modes (“non-full”
and “full”). Standard deviations refer to full training accuracies.

seq. len. (s) accuracy (%)

non-full full ± s.d.

0.5 68.2 75.4 0.75
1.5 74.0 78.4 1.19
3 75.9 79.0 0.68
5 74.1 78.3 0.86

10 71.5 77.3 0.88
30 74.0 75.6 0.44

Table 2: Accuracy comparison for different systems and training
modes (“non-full” and “full”). Neural architectures are identified by
their number of hidden layers.

system seq. len. (s) accuracy (%)

non-full full

two-layer MLP (log-mel) - 66.6 69.3
one-layer CNN (log-mel) 3 70.3 74.8
two-layer CNN (log-mel) 3 75.9 79.0
two-layer CNN (MFCC) 5 67.7 72.6
baseline GMM (MFCC) - - 72.6

the DCASE 2016 challenge.

4.3. Comparison of other systems

Here we report new comparisons with other systems that have been
tested during our development. All parameter configurations are cho-
sen in order to give each system a representation capacity that can be
comparable with the proposed network’s.

The first system we introduce is a multi-layer perceptron (MLP)
with two hidden layers. The input layer consists of 900 nodes to which
we apply log-mel features for a context window of 15 frames. We then
stack two hidden layers with 512 ReLU units (both batch-normalized)
and an output layer with 15 softmax neurons. The difference from
the proposed network is that the output is now the class associated
to the central frame of the context window, which is sliding with
unitary stride along the spectrogram. Segment-wise classification is
performed as described in Eq. (2), but now M represents the number
of frames in a segment. With the non-full training setup the proposed
model achieves a 66.6% accuracy with a convergence time of 100
epochs. A full training for 100 epochs lets the model achieve a 69.3%
accuracy.

The second model we use for the comparison consists of a CNN
whose input is a three-second sequence. The input is processed by only
one hidden convolutional layer with 2048 ReLU kernels whose RFs
cover all the mel-energy bands and a context window of 15 frames. In
this very first step the frequency dimension is narrowed, hence the
first layer outputs are matrices with unitary height. Then, after a batch
normalization layer, we stack a max-pooling layer to shrink also the
time dimension, hence obtaining a single number for each feature map.
This structure is very similar to a MLP, since each kernel looks at all
the mel-energy bands of a single context window at the same time.
The key difference is represented by the max-pooling, which, similarly
to the proposed model’s, emphasizes the occurrence of a particular

Predicted label

Figure 3: Confusion matrix for the proposed CNN evaluated on the
four folds. Three-second sequences are used.

input pattern no matter where it appears in the sequence. This network
achieves a 70.3% accuracy with the non-full training setup, which
rises to 74.8% if a full training is performed for 100 epochs.

The last result we report intends to compare our architecture
and the baseline system when both are trained on mel-frequency
cepstral coefficients (MFCCs). Details about the feature parameters
are reported in [11]. The baseline system trains 15 different mixtures
of 16 Gaussians in order to model each of the 15 classes. Classification
is performed by comparing each mixture to the test audio file in terms
of log-probabilities of the data under each model. The most similar
mixture gives the chosen class. We choose a sequence length of five
seconds for this comparison. Our model reaches a 67.7% overall
accuracy with the non-full training setup and the average convergence
time on the validation data is 100 epochs. The performance reaches a
72.6% overall accuracy with a full training setup, which equals the
baseline accuracy.

5. CONCLUSIONS

Our work proposes one out of many possible ways of approaching
acoustic scene classification with CNNs. In doing so we reach a 79.0%
accuracy on the DCASE 2016 development dataset, demonstrating that
a two-layered convolutional network can achieve higher accuracies if
compared to a two-layer MLP (9.7% more), a one-layer CNN (4.2%
more) and a GMM-MFCC system (6.4% more). We observed also
that, under particular circumstances, training the network without
monitoring its generalization performance can lead to a relevant
accuracy improvement. This is true especially when the lack of training
data is a narrow bottleneck for the network generalizing performance.

6. ACKNOWLEDGMENTS

The authors wish to acknowledge CSC — IT Center for Science,
Finland, for generous computational resources.



Detection and Classification of Acoustic Scenes and Events 2016 3 September 2016, Budapest, Hungary

7. REFERENCES

[1] B. Schilit, N. Adams, and R. Want, “Context-aware computing
applications,” in Mobile Computing Systems and Applications,
1994. WMCSA 1994. First Workshop on. IEEE, 1994, pp.
85–90.

[2] Y. Xu, W. J. Li, and K. K. Lee, Intelligent wearable interfaces.
John Wiley & Sons, 2008.

[3] S. Chu, S. Narayanan, C.-C. J. Kuo, and M. J. Mataric, “Where
am I? Scene recognition for mobile robots using audio features,”
in 2006 IEEE International Conference on Multimedia and Expo.
IEEE, 2006, pp. 885–888.

[4] D. Giannoulis, E. Benetos, D. Stowell, M. Rossignol, M. La-
grange, and M. D. Plumbley, “Detection and classification of
acoustic scenes and events: An IEEE AASP challenge,” in Appli-
cations of Signal Processing to Audio and Acoustics (WASPAA),
2013 IEEE Workshop on. IEEE, 2013, pp. 1–4.

[5] M. Chum, A. Habshush, A. Rahman, and C. Sang, “IEEE AASP
scene classification challenge using hidden markov models and
frame based classification,” IEEE AASP Challenge on Detection
and Classification of Acoustic Scenes and Events, 2013.

[6] J. T. Geiger, B. Schuller, and G. Rigoll, “Large-scale audio
feature extraction and SVM for acoustic scene classification,”
in Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2013 IEEE Workshop on. IEEE, 2013, pp. 1–4.

[7] E. Olivetti, “The wonders of the normalized compression dis-
similarity representation,” IEEE AASP Challenge on Detection
and Classification of Acoustic Scenes and Events, 2013.

[8] O. Abdel-Hamid, L. Deng, and D. Yu, “Exploring convolutional
neural network structures and optimization techniques for speech
recognition.” in INTERSPEECH, 2013, pp. 3366–3370.

[9] K. J. Piczak, “Environmental sound classification with con-
volutional neural networks,” in Machine Learning for Signal
Processing (MLSP), 2015 IEEE 25th International Workshop on.
IEEE, 2015, pp. 1–6.

[10] H. Phan, L. Hertel, M. Maass, and A. Mertins, “Robust audio
event recognition with 1-max pooling convolutional neural net-
works,” arXiv preprint arXiv:1604.06338, 2016.

[11] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database for
acoustic scene classification and sound event detection,” In 24th
Acoustic Scene Classification Workshop 2016 European Signal
Processing Conference (EUSIPCO), 2016.

[12] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Bat-
tenberg, and O. Nieto, “librosa: Audio and music signal analysis
in python,” in Proceedings of the 14th Python in Science Confer-
ence, 2015.

[13] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier
neural networks,” in International Conference on Artificial Intel-
ligence and Statistics, 2011, pp. 315–323.

[14] F. Chollet, “keras,” https://github.com/fchollet/keras, 2015.

[15] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[16] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
CoRR, vol. abs/1502.03167, 2015. [Online]. Available:
http://arxiv.org/abs/1502.03167

[17] H. Shimodaira, “Improving predictive inference under covari-
ate shift by weighting the log-likelihood function,” Journal of
statistical planning and inference, vol. 90, no. 2, pp. 227–244,
2000.


