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ABSTRACT

In this paper, we present a deep neural network (DNN)-based acous-
tic scene classification framework. Two hierarchical learning meth-
ods are proposed to improve the DNN baseline performance by in-
corporating the hierarchical taxonomy information of environmen-
tal sounds. Firstly, the parameters of the DNN are initialized by the
proposed hierarchical pre-training. Multi-level objective function
is then adopted to add more constraint on the cross-entropy based
loss function. A series of experiments were conducted on the Task1
of the Detection and Classification of Acoustic Scenes and Events
(DCASE) 2016 challenge. The final DNN-based system achieved
a 22.9% relative improvement on average scene classification er-
ror as compared with the Gaussian Mixture Model (GMM)-based
benchmark system across four standard folds.

Index Terms— Acoustic scene classification, deep neural net-
work, hierarchical pre-training, multi-level objective function

1. INTRODUCTION

In recent years, much research effort has been attracted for mak-
ing sense of everyday or environmental sounds. It focuses on how
to convert audio (non-speech and non-music) recordings into un-
derstandable and actionable information: specifically how to allow
people to search, browse and interact with sounds. Some specif-
ic tasks were investigated in recent years, including acoustic scene
classification (ASC) [1]], sound event detection (SED) [2, 3] and do-
mestic audio tagging. ASC aims to associate a semantic label to an
audio segment that identifies the sound environment where it has
been produced [1]. The goal of SED is to detect the sound events
that are present within an audio signal, estimate their start and end
times, and give a class label to each of the events. For audio tag-
ging, there is no information about sound event onset or offset, only
labels. This paper will focus on the ASC task.

The ASC problem was first proposed by Sawhney and Maes
[4]. Recently, more related work was conducted during the IEEE
AASP Challenge: Detection and Classification of Acoustic Scenes
and Events [5,16,[7]. Mel Frequency Cepstrum Coefficients (MFCC-
s) were used as the audio feature by most of the submitted systems.
GMMs, Support Vector Machines (SVMs) or hidden Markov mod-
els (HMMs) were commonly used classifier [6} I8, |9]. Other meth-
ods, such as non-negative matrix factorization (NMF) approaches
can also be used to extract an intermediate representation prior to
classification [10].

Recently, deep learning methods have obtained great successes
in speech, image and video fields [[11} [12} 13} [14] since Hinton et
al showed the insights in using a greedy layer-wise unsupervised
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Figure 1: Example of a hierarchical acoustic scene taxonomy.

learning procedure to train a deep model in 2006 [15]. Deep learn-
ing methods were also investigated for acoustic scene classification
tasks in [[16L 17, [18]. In [16]], a series of experimental investigations
on the DNN structure, including the number of hidden layers and
input frame expansion, were presented. It also demonstrated that
DNN can yield better results than GMM and SVM. Convolutional
neural networks (CNNs) which are the variant of DNNs have been
also adopted for environmental sound classification in [17].

There is also a research about the taxonomy of the environ-
mental sounds [19} 20]. The taxonomy of environmental sound-
s indicates that hierarchical categories information exists in sound
classes. For example, environmental sounds can be coarsely clas-
sified into indoor, outdoor and vehicle in Fig. [I] and these are the
high-level scene classes. Meanwhile, corresponding branches de-
note the low-level scene classes. In this paper, we propose a hierar-
chical learning method incorporating the acoustic scene taxonomy
information for ASC in a DNN-based framework. Two approach-
es are presented to utilize the acoustic scene taxonomy informa-
tion. Firstly, a high-level DNN is discriminatively trained to pre-
dict three high-level classes, namely vehicle, indoor and outdoor.
Then the trained DNN is used to initialize the low-level DNN except
for the top classification layer to learn the more difficult low-level
scene classes, namely bus, home, park, etc. This learning process
is named as hierarchical pre-training, which follows the common
“easiest thing first hardest second” learning experience of human
[21]. Hierarchical pre-training is a supervised process which is d-
ifferent from the common Restricted Boltzmann machine (RBM)
based unsupervised pre-training [15]. The second idea is based on
a proposed multi-level objective function, which means the DNN
not only predicts the target low-level scene classes, but also predicts
the three high-level scene classes as the auxiliary task. It is actually
a multi-task learning [22]] which has been demonstrated to be ef-
fective in recent DNN-based speech enhancement [23] and speech
recognition [24].

The rest of the paper is organized as follows. In Section [2] we
describe the DNN-based acoustic scene classification baseline sys-
tem. Hierarchical pre-training and multi-level objective function are
presented in Section [3] In Section ] we present a series of experi-
ments to assess the system performance. Finally we summarize our
findings in Section[3}
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2. DNN-BASED ACOUSTIC SCENE CLASSIFICATION

DNN is a non-linear multi-layer model with powerful capability to
extract robust feature related to a specific classification [13] or re-
gression [12] task. ASC is a typical classification problem where a
specific scene label should be assigned to an audio segment.

2.1. DNN baseline

A basic DNN consists of a number of different layers stacked to-
gether in a deep architecture: an input layer, several hidden layers
and an output layer. More precisely, when the goal is to classify an
audio feature x among N acoustic scene classes, a DNN estimates
the posteriors pj;, j € {1,..., J}, of each class given the input fea-
ture x. The input x which is fed into DNN represents the contextual
audio feature, such as 11 consecutive frames centered at the current
frame. Such contextual information was shown to improve the pre-
diction performance in DNN-based speech enhancement or speech
recognition [[12} [13]. The activation functions used in each hidden
unit of the hidden layers are non-linear sigmoid or Rectified Linear
Units (ReLUs) [25] function. The ReLU, which is adopted in this
work, has several advantages over the sigmoid: faster computation
and more efficient gradient propagation and it is defined below:

f(y) = max(0,y) )

where y is the output of the hidden unit before activated by ReLU.
The output is computed via the softmax nonlinearity to force the
target label to have the maximum posterior while competing with
other non-targets. The objective is to minimize the cross entropy
between the predictions of DNN p = [p1,...,ps]” and the target
probabilities d = [d1,...,ds]T. The loss function is defined as
following:

J
L ==Y djlog(p;) ()
j=1

The classical back-propagation (BP) algorithm [13]] can be used to
update the weights and bias of DNN based on the calculated error.

2.2. Dropout for the over-fitting problem

Deep learning architectures have a natural tendency to over-fitting
especially when there is a little training data. Dropout is a simple
but effective way to alleviate this problem [25]. In each training
iteration, the feature value of every input unit and the activation of
every hidden unit are randomly removed with a predefined proba-
bility (e.g., p). These random perturbations effectively prevent the
DNN from learning spurious dependencies. At the decoding stage,
the DNN discounts all of the weights involved in the dropout train-
ing by (1 — p), regarded as a model averaging process [26].

For the acoustic scene classification task, the testing audio seg-
ment could be totally different from the used training audio seg-
ments due to the presence of background noise. Thus Dropout
should be adopted to improve its robustness to generalize to vari-
ants of testing segments.

2.3. Decision maker based on average confidence

ASC aims to assign a single semantic label to an audio segment.
Majority voting is often used to make a global decision across all
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Figure 2: Proposed hierarchical pre-training.

of the single audio frames in this segment [1]]. Here we proposed to
use a more precise decision making scheme:

T
. 1
¢ = mjax(f ;pt,j) 3)

where T’ is the total number of frames belonging to the current test-
ing audio segment, ¢ denotes the predicted global scene label based
on the average confidence across the whole frames, and p; ; repre-
sents the estimated DNN posterior at the ¢-th frame for class 7.

3. PROPOSED HIERARCHAL LEARNING FOR ASC

In this section, two novel methods: hierarchical pre-training and
multi-level objective function incorporating the scene taxonomy in-
formation for DNN-based ASC are presented.

3.1. Hierarchical pre-training

Pre-training is crucial to avoid the algorithm getting stuck in a lo-
cal optimum for training a deep model especially when the training
data is not sufficient. The two most notable pre-training method-
s are the RBMs [[15] based and stacked auto-encoders [27] based
greedy layer-wise algorithms. They are both unsupervised while
the proposed hierarchical pre-training is supervised. In the acoustic
scene taxonomy research [20]], the acoustic scenes are naturally cat-
egorized into hierarchical classes. Fig. 2] shows how the proposed
DNN-based method incorporates the hierarchical taxonomy infor-
mation. The hierarchical pre-training consists of two steps. First-
ly, the DNN1 was trained to predict the three high-level acoustic
scene classes, namely indoor, outdoor and vehicle. DNN2 was then
trained to estimate the posterior of the 15 target low-level acoustic
scene classes with the initialized weights from DNN1. Note that the
classification layer of DNN2 was initialized with random weights
because this top layer is different from DNNT. It is easier for DNN
to learn the three coarsely classified high-level classes than the 15
target classes. However, the DNN2 can be better fine-tuned based
on DNNI. It follows the common sense of human learning process:
easiest things first hardiest second. The experience of learning eas-
ier things could benefit the learning for harder things.

3.2. Multi-level objective function

Multi-task learning [22] is successfully adopted in DNN-based
speech enhancement [23]] and DNN-based speech recognition [24].
The auxiliary target was demonstrated beneficial for the primary tar-
get. Inspired by this, multi-level objective function is proposed to
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Figure 3: Proposed multi-level objective function based on the well
trained DNN2. W and b denote the weights and bias, respectively.

incorporate the hierarchical acoustic scene taxonomy information
into the integrated objective function.

Fig. [B]shows the proposed multi-level objective function based
on the well trained DNN2. The main difference between DNN2 and
DNN3 is that an additional softmax layer is designed to describe
the three high-level classes (indoor, outdoor and vehicle). W and
b denote the weights and bias, respectively. W’ and b’ of DNN3
were both initialized by W and b of DNN2. The additional softmax
layer (W”,b”") was randomly initialized. With this modification,
the cross entropy based loss function should be changed to contain
two parts as follows:

N J
L.y = —« Z Z dt,;log(pt,;)

t=1 j=1

N K
(1-«) sztklogptk

t=1 k=1
“
where N is the mini-batch size, d;,; denotes the target probability
at the ¢-th frame for the j-th low-level scene class, d; x denotes the
DNN predicted posterior at the ¢-th frame for the k-th high-level
scene class. « is the weighting factor to tune the error contribu-
tion from the above two parts. J and K represent the 15 low-level
classes and the three high-level classes, respectively.
Hence, the proposed multi-level objective function is another
idea to utilize the hierarchical scene taxonomy information besides
the proposed pre-training in Sec. 31}

4. EXPERIMENTAL SETUP AND RESULTS

The proposed methods were evaluated on the task1 of DCASE 2016
challenge. Taskl is about acoustic scene classification aiming to
classify a test recording into one of the predefined classes that char-
acterizes the environment where it was recorded. The dataset con-
sists of recordings from various acoustic scenes, all having distinct
recording locations. For each recording location, 3-5 minutes long
audio recording was captured. The original recordings were then
split into 30-second segments for the challenge. There are 15 E| a-
coustic scenes for this task. Three high-level scene classes are also
indicated.

115 scene classes in DCASE2016 task1, C1: Lakeside beach (outdoor);
C2: Bus, traveling by bus in the city (vehicle); C3: Cafe / Restaurant, small
cafe/restaurant (indoor); C4: Car, driving or traveling as a passenger (ve-
hicle); C5: City center (outdoor); C6: Forest path (outdoor); C7: Grocery
store, medium size grocery store (indoor); C8: Home (indoor); C9: Library
(indoor); C10: Metro station (indoor); C11: Office, multiple persons, typ-
ical work day (indoor); C12: Urban park (outdoor); C13: Residential area
(outdoor); C14: Train (traveling, vehicle); C15: Tram (traveling, vehicle).
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For all of the acoustic scenes, each of the recordings was cap-
tured in a different location: different streets, different parks and
different homes. Recordings were made using a Soundman OK-
M II Klassik/studio A3, electret binaural microphone and a Roland
Edirol R-09 wave recorder using 44.1 kHz sampling rate and 24 bit
resolution. The recordings are down-sampled into 16 kHz in this
paper. The microphones are specifically made to look like head-
phones, being worn in the ears. As an effect of this, the recorded
audio is very similar to the sound that reaches the human auditory
system of the person wearing the equipment.

The TUT Acoustic scenes 2016 dataset consists of two subsets:
a development dataset and an evaluation dataset. In this paper, only
the development dataset is used for evaluation because the labels
of the evaluation dataset have not been released. The development
dataset contains 1170 segments in total with 30 seconds length for
each. A cross-validation setup with four folds is provided for the
development dataset. The scoring of acoustic scene classification
will be based on classification accuracy. Each segment is considered
as an independent test sample. Confusion matrix among various
acoustic scene classes would also be presented.

The official baseline system is based on the MFCC acoustic fea-
tures and GMM classifier. The system learns one acoustic model per
acoustic scene class, and performs the classification with maximum
likelihood classification scheme. The length of each frame is 40 ms
with 50% hop size. The acoustic features include 20-dimension M-
FCC static coefficients (Oth coefficient included), delta coefficients
and acceleration coefficients.

For the DNN method, 11 frames of Mel-filter bank features with
40 channels were used as the input. Two hidden layers with 500 Re-
LU hidden units for each layer were adopted for DNN. The learning
rate was 0.005. The momentum was set to 0.9. Weight cost was not
used. The dropout value for the input layer was 0.1 while 0.3 for
hidden layers. o in Eq. ] was 0.6. NVIDIA-Tesla-M2090 GPU was
used to train the DNN models. The output unit number for DNNI1,
DNN2 and DNN3 were 3, 15 and 18, respectively.

4.1. Evaluations for the proposed methods

System | Fold1 | Fold2 | Fold3 | Fold4 | Average
DNN1 93% 90% 89% 91% 90%

Table 1: Frame-wise accuracy (%) for three high-level scene classes
on different cross-validation (CV) folds using DNN1. All of the re-
lated CV audio segments were excluded from the training samples.

As shown in Fig. [2] DNN1 should be trained as the pre-trained
model for DNN2. Table[]gives the frame-wise accuracy (%) for the
three high-level scene classes on four cross-validation (CV) folds
using DNN1. All of the related CV audio segments were excluded
from the training sampels. An average of frame-level 90% accuracy
can be obtained for the classification of three high-level acoustic
scene classes, namely indoor, outdoor and vehicle. Therefore, DNN
can easily deal with this learning. It would offer a good starting
optimization point for the fine-tuning of DNN2 with the initialized
weights from DNN1.

Then the DNN2 was trained to predict the 15 target acoustic
scene classes based on the well trained DNN1. Table P] presented
the overall comparison of acoustic scene accuracy (%) on different
CV folds among the DCASE2016 official GMM baseline, the DNN
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Systems Fold 1 ACC (%) | Fold 2 ACC (%) | Fold 3 ACC (%) | Fold 4 ACC (%) | Average ACC (%)
GMM-baseline 72.50 66.80 70.10 75.70 71.28
DNN-baseline (+dropout) 79.62 67.24 75.84 78.08 75.19
DNN2 (+hierarchical pre-training) 80.69 71.72 77.52 78.77 77.17
DNN3 (++multi-level objective func) 81.38 72.41 77.85 79.79 77.86

Table 2: The overall comparison of acoustic scene accuracy (%) on different cross-validation (CV) folds among the DCASE2016 official
GMM baseline, the DNN baseline improved by dropout, the DNN2 with the hierarchical pre-training based on DNN baseline, and the DNN3
optimized by the proposed multi-level objective function based on DNN2. All of the related CV audio segments were excluded from the

training samples.
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Figure 4: The confusion matrix among 15 acoustic scene classes by
comparing the DNN predicted class with the target class on all of
the four folds. Cz,z € {1,...,15} represent the indices of the 15

classes which were defined in footnote 1.

baseline improved by dropout, the DNN2 with the hierarchical pre-
training based on DNN baseline, and the DNN3 optimized by the
proposed multi-level objective function based on DNN2. All of the
related CV audio segments were excluded from the training sam-
ples. The DNN baseline improved by dropout outperformed the
provided GMM-MFCC baseline at all folds. The acoustic scene
accuracy was increased from 71.28% to 75.19% on average. It
also should be noted that the DNN is just slightly better than G-
MM on Fold 2 where the performance is the lowest. However,
with the proposed hierarchical pre-training, its accuracy was sig-
nificantly improved from 67.24% to 71.72% on Fold 2. Therefore,
it demonstrates that the proposed hierarchical pre-training is impor-
tant in challenging scene classification situations. DNN2 obtains
an 8% relative improvement compared with the DNN baseline from
75.19% to 77.17%.

The DNN3 optimized by the proposed multi-level objective
function gives further improvement. The final average acoustic
scene accuracy was increased to 77.86%. It indicates that the ad-
ditional constraint imposed in Eq. E| can benefit the primary target.
Finally, the proposed DNN system offers 22.9% and 10.8% relative
improvements compared with the GMM-MFCC baseline and the
DNN baseline, respectively. Note that the DNN baseline is a strong
system since it is optimized by dropout training.

4.2. Further discussions

Fig. @]presents the confusion matrix among 15 acoustic scene class-
es by comparing the DNN predicted class with the target class on
all of the four folds. Cz,z € {1,...,15} represents the indices of
the 15 classes which were defined in footnote 1. Observed from
this confusion matrix, one phenomenon is that park (C'12) easily
gets confused by residential area (C13), and vice versa. It could
be explained that similar acoustic events happened in both acoustic
environments, like the bird singing and car passing-by. Another in-
teresting case is that grocery store (C'7) tends to be mis-recognized
as restaurant (C'3) due to the common human speech events. This
might suggest that the presence of common human speech needs
to be reduced in the audio segments before the acoustic scene clas-
sification is conducted. Tram (C'15) also has the tendency to be
incorrectly identified as Train (C'14).

In this acoustic scene classification task, the characteristics of
the test audio segment can be very different from the used training
audio segments because of the randomly happening acoustic events.
The adopted Dropout method can alleviate this problem. Howev-
er, more robust feature learning methods should be developed to
extract the specific acoustic characteristics of the certain acoustic
environments.

5. CONCLUSIONS

In this paper, we have studied how to incorporate the taxonomy in-
formation into deep learning framework, and developed two DNN-
based hierarchical learning methods for the acoustic scene classifi-
cation task. The first novel method, called hierarchical pre-training
which is a supervised learning process, can help the second DNN
to get a better initialized weights based on the learning experience
from the three high-level coarsely classified classes. It can achieve
an 8% relative improvement compared with the DNN baseline im-
proved by Dropout. The second proposed approach was the multi-
level objective function which was inspired by the multi-task learn-
ing. It can help improve the prediction accuracy of the primary 15
target low-level classes by adding additional estimation of the three
high-level classes in the DNN output, which was also regarded as
imposing more constraint on the cross-entropy loss function. This
idea can further improve the scene classification performance. Fi-
nally, the proposed DNN system has obtained 22.9% and 10.8%
relative improvements over the GMM-MFCC baseline and the well
trained DNN baseline, respectively.

In our future work, the hierarchical learning will also be investi-
gated in more complicated network structure, such as the CNN and
the long-short term memory (LSTM) model based framework, for
the acoustic scene classification task.
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