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ABSTRACT

In this paper, we compare the performance of using binaural
audio features in place of single channel features for sound event
detection. Three different binaural features are studied and evalu-
ated on the publicly available TUT Sound Events 2017 dataset of
length 70 minutes. Sound event detection is performed separately
with single channel and binaural features using stacked convolu-
tional and recurrent neural network and the evaluation is reported
using standard metrics of error rate and F-score. The studied binau-
ral features are seen to consistently perform equal to or better than
the single-channel features with respect to error rate metric.

Index Terms—
Polyphonic sound event detection, binaural, monochannel, con-

volutional recurrent neural network

1. INTRODUCTION

Sound event detection (SED) is the task of recognizing the sound
events and their respective temporal start and end time in a record-
ing. Sound events in real life do not always occur in isolation,
but tend to considerably overlap with each other. Recognizing
such overlapping sound events is referred as polyphonic SED. Ap-
plications of such polyphonic SED are numerous. Recognizing
sound events like alarm and glass breaking can be used for surveil-
lance [1, 2]. Environmental sound event detection can be used for
monitoring biodiversity studies [3, 4, 5]. Further, SED can be used
for automatically annotating audio datasets, and the sound events
recognized can be used as a query for retrieval.

Polyphonic SED using monochannel audio has been studied
extensively. Different approaches have been proposed using su-
pervised classifiers like Gaussian mixture model - hidden Markov
model [6], fully-connected networks [7], convolutional neural net-
works (CNN) [8, 9] and recurrent neural networks (RNN) [10, 11].
More recently, the state of the art method for polyphonic SED was
proposed in [12] and evaluated on multiple private and publicly
available datasets. They used log mel-band energies along with
a convolutional recurrent neural network (CRNN) architecture as
their method.

Recognizing overlapping sound events using monochannel au-
dio is a difficult task. These overlapping sound events can poten-
tially be recognized better with multichannel audio. One of the first
methods to use multichannel audio for SED was [13]. They per-
formed SED on each of the monochannel audio and the combined
likelihoods across channels was used for the final prediction. More
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recently [14] extended the state of the art CRNN network of [12]
for multichannel features and multiple feature classes and showed
that using binaural instead of monochannel recordings of the same
datasets used in [12] improved the SED performance. Binaural fea-
tures exploiting the inter-aural intensity and time differences were
used in this method. These initial results on binaural audio moti-
vates us to further explore polyphonic SED using binaural audio.

In this paper, we explore and study the performance of three
different binaural features - a) log mel band energy, b) log mel band
energy extracted in three different resolution windows and c) mag-
nitude and phase component of short-term Fourier transform, all
extracted in both the channels of the binaural audio. While a) has
been used in [11, 14], b) and c) has not been used in polyphonic
SED task previously. We compare the performance of SED amongst
the binaural features and also compare with the single channel log
mel-band energy feature. We separately train the multichannel net-
work method [14] with features extracted from the publicly avail-
able TUT Sound Events 2017 dataset and present the results.

The feature extraction and neural network used is described in
section 2. The dataset creation, evaluation metrics and procedure
are explained in section 3. Finally, the results and discussion are
presented in section 4.

2. METHOD

The input to the method is an audio signal. Features are extracted in
consecutive time windows from each channel of the audio. These
audio features are fed to a multichannel convolutional and recurrent
neural network architecture, which maps the audio features to the
sound event labels in the dataset. The output of the neural network
is in the range of [0, 1] for each of the sound event label, where one
refers to the sound event being active, and zero for absence. The
detailed description of feature extraction and the neural network is
presented below.

2.1. Feature extraction

In this paper, we study the performance of three binaural audio fea-
tures and compare it with single channel audio feature. All features
are extracted in hop length of 20 ms to keep the number of frames
same.

2.1.1. Single channel feature

Log mel-band energy (mbe) has been used extensively for the SED
task [10, 12, 11, 14] we continue to use the feature in this paper.
mbe is extracted in Hamming window of length 40 ms. We use 40
mel-bands in the frequency range of 0-22500 Hz. For a given audio
input of F frames, this feature extraction block results in a F × 40
output.
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Figure 1: Stacked convolutional and recurrent neural network for
binaural polyphonic sound event detection.

2.1.2. Binaural features

The first binaural feature we study is the binaural log mel-band en-
ergy (bin-mbe) from the works of [11], where it was shown to per-
form better than the mbe. We extract bin-mbe in a similar fashion
as mbe on each of the binaural channels resulting in a F ×80 (40*2
= 80) output.

Su et al. in [15] reported that mbe extracted in multi-resolution
windows give considerable improvement for SED over using just
the single resolution mbe. Motivated by this we extend it to binaural
scenario, and extract it in both the channels of audio (bin-mul-
mbe). Specifically, we use three different window sizes 1024, 4096,
and 16384 as in the paper [15] and extract mbe feature in each of the
windows and each of the binaural channels. This feature extraction
block results in a F × 240 (40*3*2 = 240) output.

Recently, it was shown that the neural networks can estimate
the direction of arrival from just the phase components of the multi-
channel short-term Fourier transform (STFT) coefficients [16]. Mo-

tivated by this, we extend it to binaural channels by extracting STFT
in each of the binaural channels and propose to also use the mag-
nitude component along with the phase component (bin-fft). We
extract STFT in windows of 40 ms using 2048 points, post which
we calculate the magnitude and the phase component resulting in a
F × 4096 (1024*2*2 = 4096) output.

2.2. Neural network

The input to the neural network in the case of single channel audio
is T consecutive time frames of mbe, with a dimension of T × 40
as shown in Figure 1. In the case of binaural audio features, we
stack each of the channel features separately. Specifically, for bin-
mbe we stack the T × 80 output of feature extraction block to a
volume of dimension T × 40 × 2. In case of bin-mul-mbe and
bin-fft along with the channels, we also stack the multi-resolution
windows, phase and magnitude components separately, resulting in
volumes of dimension T × 40× 6 and T × 1024× 4 respectively.
Based on the task of mono or binaural SED, the network is fed with
the respective feature sequence. In this paper, we use a sequence
length of T = 256 for all the features.

We use convolutional neural network (CNN) as our initial lay-
ers to learn local shift-invariant patterns from audio feature. The
receptive filters of these CNNs are of the size 3 × 3 size. The out-
put activation from the CNN layers are padded with zeros to keep
the dimension of the output the same as input. Batch normaliza-
tion [17] and max-pooling is performed after every layer of CNN
to reduce the final dimension to T × 2 × N , where N is the num-
ber of filters in the final layer of CNN. We perform max-pooling
in the frequency axis only, this is done to preserve the time res-
olution of the input. The CNN layer activation is further fed to
layers of bi-directional gated recurrent units (GRU), to learn long
term temporal activity patterns. This is followed by layers of time-
distributed fully-connected (dense) layers. The time resolution re-
mains the same as input feature in both GRU and dense layers. The
final prediction layer has an output dimension of T × C, where C
is the number of classes in the dataset. The prediction layer has
sigmoid activation in order to be able to produce multi-label output.

The training is performed for 500 epochs using binary cross-
entropy loss function and Adam [18] optimizer with a learning rate
of 0.0001. Dropout [19] is used as a regularizer after every layer
of neural network to make it robust to unseen data. Early stopping
is used to stop over-fitting the network to training data. Training is
stopped if the error rate (see Section 3.2) on the test split does not
improve for 100 epochs. The neural network implementation was
done using Keras [20] framework with Theano [21] as backend.

Sound events Length
brakes squeaking 67.6
car 2541.5
children 346.1
large vehicle 727.0
people speaking 630.6
people walking 1079.2
Total 5391.9

Table 1: Distribution of sound event in the dataset. The length is
given in seconds.
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3. EVALUATION

3.1. Dataset

We study the performance of the binaural features on the develop-
ment set of TUT sound events 2017 dataset organized as part of
Detection and Classification of Acoustic Scenes and Events [22].

This dataset consists of about 70 minutes of audio data collected
in street scenario with annotations of six sound event classes. Ta-
ble 1 presents the sound event classes and their distribution in the
dataset. There are 24 recordings in total, each of about 3-5 minutes,
recorded using Soundman OKM II Klassik/studio A3 electret in-ear
microphone and a Roland Edirol R-09 wave recorder. The record-
ings are sampled at 44.1 kHz and 24 bit resolution. The single chan-
nel audio for single channel feature study is created by taking the
average of the binaural channel audio. The dataset provides four
cross validation splits for the above data, with train, validation and
test splits.

3.2. Metric

The SED method is evaluated using the polyphonic SED metrics
proposed in [23]. Particularly we use segment wise error rate (ER)
and F-score calculated in segments of one second length. According
to which the F-score is calculated as,

F =
2 ·

∑K
k=1 TP (k)

2 ·
∑K

k=1 TP (k) +
∑K

k=1 FP (k) +
∑K

k=1 FN(k)
, (1)

where for each one second segment k, TP (k) is the true posi-
tives, the number of sound event labels active in both predictions
and groundtruth. FP (k) is the false positives, the number of
sound event labels active in predictions but inactive in groundtruth.
FN(k) is the false negatives, the number of sound event labels ac-
tive in the ground truth but inactive in the predictions.

The error rate is measured as,

ER =

∑K
k=1 S(k) +

∑K
k=1 D(k) +

∑K
k=1 I(k)∑K

k=1 N(k)
, (2)

where, N(k) is the total number of active sound events in the
ground truth of segment k. The substitutions (S(k)), deletions
(D(k)) and insertions(I(k)) are measured using the following equa-
tions for each of the K one second segments.

S(k) = min(FN(k), FP (k)) (3)
D(k) = max(0, FN(k)− FP (k)) (4)
I(k) = max(0, FP (k)− FN(k)) (5)

For an ideal SED method, ER is zero and F-score is 100.

3.3. Baseline

The baseline method for the dataset used is provided in [22]. This
method uses single channel mbe as the audio feature. The network
consists of two fully-connected layers with 50 units in each fol-
lowed by a dropout layer with 0.2 dropout rate. The prediction layer
has number of sigmoid units equal to the number of classes in the
dataset. The method uses a context of 5 frames resulting in a feature
length of 200 (40*5). The network is trained with cross-entropy loss
and Adam optimizer for 200 epochs. The evaluation metric scores
for this method is reported in Table 2.

3.4. Evaluation procedure

A random hyper-parameter search [24] is performed by varying the
number of layers and units of CNN, GRU and dense layers, and the
dropout in the set of {0.05, 0.25, 0.5, 0.75} for each of the feature.
The hyper-parameter tuning was done to achieve the best ER on the
test split. The best configuration found was the same for all the
mel based features (mbe, bin-mbe, bin-mul-mbe), while the bin-
fft stereo was seen to give good results with the same network but
larger max-pooling (1 × 8 after each layer of CNN). The network
for mel based features and its configuration is as shown in Figure 1.
The dropout rate for the above configuration was 0.5 for mbe and
bin-mbe, 0.25 for bin-mul-mbe and 0.05 for bin-fft

We perform SED on the above dataset individually with all the
single channel and binaural features and report the average ER and
F-scores of five separate runs of four cross-validation provided in
the dataset.

Development Challenge
Audio features ER F ER F
baseline [22] 0.69 56.7 0.94 42.8
mbe 0.55 69.3 0.79 41.7
bin-mbe 0.52 69.1 0.80 42.9
bin-mul-mbe 0.50 70.3 0.85 41.4
bin-fft 0.55 66.9 0.87 36.2

Table 2: Best evaluation metric scores achieved with different audio
features on the development dataset and the evaluation dataset of
DCASE 2017 challenge [22].

4. RESULTS AND DISCUSSION

The evaluation results for SED using single channel and binaural
features are presented in Table 2. We see that the stacked convo-
lutional and recurrent neural network with the single channel audio
feature (mbe) outperforms the baseline method [22].

Binaural features in general have similar performance as single
channel features on the evaluated dataset. In particular the ER of
binaural features is seen to be equal or better than the single channel
feature. The noteworthy performance is of bin-mul-mbe which is
seen to improve the ER considerably over mbe.

The validation and training loss of the network with bin-fft
was considerably higher than the other features. Suggesting that the
size of the data was possibly less for this feature to find the best
weights.

4.1. DCASE 2017 challenge results

The stacked convolutional and recurrent neural network trained re-
spectively with the three binaural and the single channel feature was
submitted in the real life sound event detection task of DCASE 2017
challenge [22]. The results obtained on the evaluation data of the
challenge is presented in Table 2. All the submitted systems fared
well on the evaluation data and resulted in challenging scores. In
particular, the network trained on mbe fared as the best method in
the challenge followed by bin-mbe in close second among the 34
submitted methods from 14 different teams.
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5. CONCLUSION

In this paper, we proposed to study the performance of using differ-
ent binaural audio features for polyphonic sound event detection. In
this regard three binaural features were studied and compared with
a baseline single channel audio feature. We performed SED sepa-
rately for each of the feature using a stacked convolutional and re-
current neural network. The evaluation was carried out on the pub-
licly available TUT Sound Events 2017 dataset. It was observed
that using binaural features gave similar or better error rate than
single channel features. In particular log mel-band energy feature
extracted in different resolution windows was seen to produce the
best results for the given dataset.
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