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ABSTRACT 

The DCASE2017 Challenge Task 3 is to develop a sound event 

detection system of real life audio. In our setup, we merge the 

two channels into one, then use Mel-band energy to calculate the 

converted spectrum, and train the model using a convolutional 

neural network (CNN). The method we use achieves a 0.8575 

segment-based error rate on the final result, which is an 8.4% 

improvement comparing to the baseline model. It proves the 

practicability of using CNNs for sound event detection.  

Index Terms— Sound event detection, Mel-filter bank, 

Convolutional neural network, Acoustic scene classifica-

tion 

1. INTRODUCTION 

Sound event detection (SED) is a relatively new research area. 

Researchers have been designing various systems to detect the 

scenes and events in provided audio files. SED are useful in but 

not limited to the following fields: smart home electrical appli-

ance development [1], video classification [2], and security [3]. 

The DCASE2017 Challenge Task 3 uses training and testing 

materials recorded in real-life environments [4]. Participants are 

required to label the correct time frames for specific events in six 

categories. One of the difficulties is the unlimited number of 

overlapping sound events at each time. Other difficulties include 

the unbalanced categories, varying length of events, etc. 

Typical AED frameworks are composed of at least two parts: 

feature extraction and audio event inference [5]. In our method, 

we use Mel-band energy as our feature extraction process and 

convolutional neural network (CNN) as the inference process. 

CNN is widely used in image processing [6] as well as speech 

recognition [7]. It is chosen for the ability to learn internal char-

acteristics from the large training dataset. 

2. SYSTEM SETUP 

 

Figure 1: Framework of the proposed system. 

As shown in Figure 1, the system we develop mainly con-

sists of four different parts: normalization, feature extraction, 

convolutional neural network (CNN) and post-processing. We 

first use training audio to train and tune the model, then predict 

on the testing audio according to the trained model. Details of 

each part are discussed below: 

2.1. Normalization 

First, we mix the two channels into one by calculating their av-

erage value. For the audio files provided, one of the problems is 

the inconsistency of sound volume. To deal with this, we nor-

malize all the audio files per their maximum amplitude. After 

normalization, all the audio files roughly maintain at the same 

volume in order to better fit the training model. 

2.2. Feature Extraction 

We calculate Mel-band energy spectrum in our feature extraction 

step. Mel-band energy spectrum is widely used in sound event 

detection (SED) [8] and source classification [9]. It transforms 

audio waveform into spectrum, and sooner we will deal with it 

in a way similar to image processing in the next step. 

For detail parameters, our input audio has a sampling rate 

of 44.1 kHz. We use the LIBROSA package [ref] to calculate the 

Mel-band energy, set-ting the length of FFT window to 2048 

points, hop size to 512 points, number of Mel bands to 64 and 

maximum frequency to 6400 Hz. Then, to get the training da-

taset, we merge every 128 frames (1,486ms) together into one 

patch. The reason we set this length is because that one im-

portant category, walking footsteps, has an impulse frequency of 

1~2 Hz, the length is designed to cover at least 2 impulses. Up 

till this step, we have converted the audio wav files into a series 

of 64*128 arrays.  

2.3. Convolutional Neural Network (CNN) 

The deep neural network (DNN) outperforms most of other 

models (SVM, Random Forest, etc.) in complicated pattern 

recognition tasks [10]. DNN is able to model complex non-

linear relationships between inputs and outputs. Most DNNs, 

except the Recurrent Neural Networks (RNN), has a feedforward 

structure, where data flows from the input layer to the output 

layer without looping back [11]. 

Within DNN models, CNNs are widely used in computer 

vision and acoustic modeling. It consists of an input and an out-

put layer, as well as multiple hidden layers. The hidden layers 
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Figure 2: Structure of proposed CNN. 

are either convolutional, pooling or fully connected [12], where 

convolutional layers emulate the response of an individual neu-

ron to visual stimuli; pooling layers de-crease the complexity of 

features; and fully connected layers connect every neuron in one 

layer to every neuron in another layer, sharing same principle as 

the traditional multi-layer perception neural network (MLP). 

In our configuration of CNN (shown as Figure 2), we use 

three sets of convolutional and pooling layers, with each set 

containing a convolutional layer of size (64, 5, 5) and a maxi-

mum pooling layer of size (2, 2). Passing through each set of 

layers, the complexity of features declines gradually, and finally 

turns to an array of size (12, 4, 64). We then flatten the array to 

one dimension with size 3,072, and pass it to the fully connected 

layers with two hidden layers using ReLU activation. The sizes 

of hidden layers are 384 and 48, and the final output layer has a 

size of 6, with values of the neurons ranging from 0 to 1 indicat-

ing the likelihood of the presence of the corresponding sound 

events. The whole network takes input features of size (64, 128, 

n) and transfers it to an array of size (6, n), where n is the num-

ber of patches of either the training or the test set. 

2.4. Post-processing 

The post-processing step translates the 6*n array output into the 

required format containing the start and end time of each sound 

event. Since the output value of each neuron is set between 0 

and 1, we need to set a threshold value to determine the presence 

of the event. The value we finally choose is 0.4 since we find out 

that the total number of detected events is significantly smaller 

than that of correctly labeled events in our testing. Comparing to 

the 0.5 threshold, setting it to 0.4 can increase the performance 

by around 4%. Besides, we also apply median filter to reduce the 

outliers, and fuse the prediction results of evaluation set from the 

four cross-validation models together. 

3. EXPERIMENTAL RESULTS 

Table 1: Overall result of our developed system compared to 

the baseline system and the best system [13] 

The DCASE 2017 Task 3 result is based on the sound event 

detection accuracy of given audio tracks with labeled events. 

From Table 1, we can see that our system outperforms the 

baseline system in terms of the error rate on the evaluation da-

taset. On the other hand, the error rate of the baseline system on 

the development dataset is better than ours. This difference may 

suggest that the baseline system overfits the development dataset. 

However, by comparing to the system with the best result in this 

competition we find that the result of their development dataset is 

even better. Hence, there shall be no direct relation between the 

result of evaluation and development dataset. Similar conclusion 

can be drawn for the error rate and F-measure of evaluation da-

taset as well. A better error rate cannot ensure better performance 

in F-measure. 

Table 2: Class-wise result of our developed system compared to 

the baseline system and the best system. 

We try to look at the detail of difference according to the 

class-wise comparison. From Table 2, we find that for all three 

systems, their prediction of the car category is the most accurate 

among all categories. For other categories, the error rate of our 

system is similar to the best system, but the F-measure is very 

different in some categories. The prediction by the baseline sys-

tem, however, is not so good in categories other than car. We 

investigate the result and try to find out possible explanations. 

The reason that all three models predict relatively well in car 

category may be due to that the segment length of car category 

dominates the development dataset, so all models manage to 

learn the feature relatively well. For categories other than car, the 

baseline system tends to give large amount of incorrect predic-

tion, which may be cause by overfitting issue. Our system, in 

comparison, gives little amount of prediction, which is mostly 

incorrect as well. Reasons for this may be due to that we set a 

very slow learning rate for CNN training, and use early stopping 

technique to prevent overfitting. Thus, the system tends to be 

Segment-

Based 

Result  

Overall / Evaluation 

dataset 

Overall / Development 

dataset 

Error Rate F-measure Error Rate F-measure 

Our System 0.8575 30.9% 0.81 37.0% 

Baseline 

System 
0.9358 42.8% 0.69 56.7% 

Best 

System 
0.7914 41.7% 0.25 79.3% 

 

Our 

System 

Baseline 

System 

Best 

System 

Error 

Rate 

F-

measure 

Error 

Rate 

F-

measure 

Error 

Rate 

F-

measure 

Brakes 

Squeaking 
1.000 

 
0.921 16.5% 1.000  

Car 0.854 51.8% 0.767 61.5% 0.767 54.6% 

Children 1.000 
 

2.667 0.0% 1.200 0.0% 

Large 

Vehicle 
0.989 14.6% 1.441 42.7% 1.068 49.3% 

People 

Speaking 
1.008 0.0% 1.298 8.6% 1.041 0.0% 

People 

Walking 
1.066 1.0% 1.445 33.5% 1.033 38.7% 
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conservative and makes little prediction for uncertain categories. 

The system that has the best performance, like the baseline sys-

tem, gives a reasonable amount of correct predictions for catego-

ries other than car. However, its accuracy is much higher than 

the baseline system. 

4. CONCLUSION   

From our results, we can see that the CNN structure is able to 

effectively label most of the detected events in the correct time 

range. Although CNN structure performs relatively well at rec-

ognizing complex patterns, in DCASE2017 SED dataset, it 

seems that our CNN system can only capture limited regular 

patterns among features in the same class. The difference of 

patterns among various classes may not be sufficient for the 

system to distinguish. 

To further improve the system, future work can be done by 

1) training the model on additional datasets to summarize more 

general patterns and 2) pre-training the model with clearly lab-

seled sound without background noise. 
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