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ABSTRACT

In this paper, we describe our contribution to the challenge of detec-
tion and classification of acoustic scenes and events (DCASE2017).
We propose framCNN, a novel weakly-supervised learning frame-
work that improves the performance of convolutional neural net-
work (CNN) for acoustic event detection by attending to details
of each sound at various temporal levels. Most existing weakly-
supervised frameworks replace fully-connected network with global
average pooling after the final convolution layer. Such a method
tends to identify only a few discriminative parts, leading to sub-
optimal localization and classification accuracy. The key idea of
our approach is to consciously classify the sound of each frame
given by the corresponding label. The idea is general and can be
applied to any network for achieving sound event detection and im-
proving the performance of sound event classification. In acoustic
scene classification (Task1), our approach obtained an average ac-
curacy of 99.2% on the four-fold cross-validation for acoustic scene
recognition, comparing to the provided baseline of 74.8%. In the
large-scale weakly supervised sound event detection for smart cars
(Task4), we obtained a F-score 53.8% for sound event audio tag-
ging (subtask A), compared to the baseline of 19.8%, and a F-score
32.8% for sound event detection (subtask B), compared to the base-
line of 11.4%.

Index Terms— Deep learning, convolutional neural network,
weakly supervised learning

1. INTRODUCTION

Developing an automatic system of acoustic event detection and
classification is important for many real-world applications. For
example, for multimedia based on its audio content, we can per-
ceive the sound scene where we are within (e.g. home or office) [1];
when being applied to security surveillance devices, we can recog-
nize abnormal sound sources (e.g. screaming, shouting, gun-shots)
[2, 3]. Compared with acoustic event classification, acoustic event
detection [4, 5, 6] is a more challenging task, because the system
has to discriminate not only identifying the appearing of the sounds
but also localizing the positions of those sounds in time.

However, most prior works for acoustic event detection propose
a fully-supervised model for training. Such methods usually require
a training data set that contains the annotation of the temporal posi-
tion of the acoustic events. The limitation of strongly labeled data
is that they are difficult to collect. As a consequence, such a data
set may only include a few classes of sound and small-scale sound .
In comparison, the so-called weakly labeled data only requires an-
notations of the occurrence of the acoustic events at the clip level,

not the frame level. Therefore, such weakly labeled data is easier to
amass and therefore useful for large-scale industrial applications.

There has been a number of works to propose a weakly-
supervised learning method for music auto-tagging [7], acoustic
event detection [8, 9] and image localization and segmentation
[10, 11, 12]. Compared to the fully-supervised setting, weakly-
supervised learning only relies on the weakly labeled annotations
data.

In this paper, we focus on weakly-supervised learning method
for acoustic event detection. Our key idea is to consciously iden-
tify the sound for each frame, forcing the network to pay attention
to details of the sound clip. We extend a recent CNN for acoustic
event classification by adding a branch of network for predicting
a acoustic event of each frame by training on only weak annota-
tions data. This branching network uses a small fully convolutional
network (FCN) to identify the appearing of the sounds in a frame-
to-frame manner. Our network is simple to implement and train
given any CNN structure on the fly, such as the residual network
[13] or the inception network [14]. Additionally, the branch only
requires a small computational overhead, making a network can
achieve acoustic event detection and improve the performance for
acoustic event classification.

2. PROPOSED METHOD

2.1. Data processing

We use the 128-bin log mel-spectrogram as the audio feature to
the neural network, which has been used widely in the literature
[7, 9, 15]. The mel-spectrograms are computed by short-time
Fourier transform with 2,048-sample, quarter-overlapping win-
dows, for audio sampled at 44.1kHz. The mel-scale is to reduce
the dimensionality along the frequency axis. The feature extraction
was computed using the librosa library 1 [16]. After the extraction
process, we standardize by removing mean and divided by standard
deviation derived from training set.

2.2. Network Architecture

For the acoustic event classification, we use the CNN structure pro-
posed by Oord [15]. The input of network is a mel-spectrograms,
with 128 frequency bins and 862 frames. The first convolutional
layer contains 256 kernels with size 128×4, with max pooling 1×4
and zero-padding 1×2. The second and third convolutional layer
contains 512 kernels with size 1×4, with max pooling 1×4 and
zero-padding 1×2. After the last convolutional layer, similar with

1https://github.com/librosa
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Oord [15], we apply a global temporal pooling layer across the en-
tire time axis. In the global temporal pooling layer, we concatenate
the output of three pooling methods the mean, the maximum and the
variance, leading to an output size of 1 536 for this layer. Finally,
we use two fully-connected layers with 1,024 neurons for learning
high-level representation and use the learnt high-level representa-
tion to classify the acoustic event.

For the acoustic event detection, we add a branch on the same
CNN structure after the last convolutional layer. In the branch, we
employ transpose convolution network to reconstruct the original
audio of activations and perform frame-wise classification by train-
ing on weakly annotation data. The first transpose convolutional
layer contains 512 kernels with size 1×4, with stride 1×4. The
second transpose convolutional layer contains 256 kernels with size
1×4, with stride 1×4. Finally, we use convolutional layer contain-
ing the number of class kernels with size 1×1 to predict the frame-
wise class label. While training, we assume that all the frames of a
clip have the same class label as the clip.

Note that the global temporal pooling layer and the FCN struc-
ture allows the model to process audio clips of variable length for
acoustic event detection and classification.

3. EVALUATION

3.1. Acoustic scene classification

In this task, we compare the provided baseline results. The base-
line system is a deep neural network using log mel-band energies
with 5 context frames as features. The feature is extracted with a
frame size of 40ms and 20ms hop size. The network contains two
fully-connected layers with 50 neurons and uses dropout technique
to avoid overfitting. For the classification task, the decision layer
uses the softmax function as output activation function. Table 1
shows the average classification accuracy over 4 evaluation folds
for acoustic scene classification. As can been seen, our network
obtains an accuracy of 99.2%, compared to the average baseline of
74.8%. The result demonstrates our network significantly outper-
forms the baseline system. On the other hand, we found our weakly-
supervised framework can not only perform frame-wise classifica-
tion but also improve the performance of classification accuracy.
Note that we did not use any output of frame-wise classification to
make the clip-level decision.

3.2. Large-scale weakly supervised sound event detection for
smart cars

The evaluation of sound event detection for smart cars are divided
into two subtasks. The first task (subtask A) considers the sound
event detection without timestamps, which is similar to acoustic
multi-lable classification (i.e. we only need to identify the appearing
of sound in audio). The evaluation metrics is based on class-level
F1-score. The second task (subtask B), on the other hand, consid-
ers the sound event detection with timestamps, which means that
we need to identify a boundary for the appearing of sound in audio.
This subtask considers two evaluation metrics: segment-based error
rate and segment-based F1-score, using one-second segments. The
model and feature extraction of baseline system is the same with the
one for acoustic scene classification, but it uses the sigmoid function
as output activation function.

Table 2 compares three metrics F1-score, precision and recall
with class-level of subtask A for sound event detection without

Table 1: Experimental result for acoustic scene classification accu-
racy, averaged over 4 evaluation folds

Acoustic Scene Baseline Proposed Method
Beach 75.3% 98.6%
Bus 71.8% 100.0%
Cafe / Restaurant 57.7% 100.0%
Car 97.1% 98.8%
City center 90.7% 99.3%
Forest path 79.5% 98.7%
Grocery store 58.7% 99.6%
Home 68.6% 98.1%
Library 57.1% 99.0%
Metro station 91.7% 99.3%
Office 99.7% 99.7%
Park 70.2% 99.0%
Residential area 64.1% 98.2%
Train 58.0% 98.9%
Tram 81.7% 100.0%
Overall accuracy 74.8% 99.2%

Table 2: Experimental result of subtask A for sound event detection
without timestamps

Class-based Baseline frameCNN
F1-score 13.1% 53.8%
Precision 12.2% 54.0%
Recall 14.1% 55.4%

timestamps. As we can see, the proposed method achieves an F1-
score of 50.0%, compared to the baseline of 13.1%. The result
shows our network performs remarkably better than the baseline
system. On the other hand, the result of subtask B is shown in Table
3. Again, our model also can perform well by given the boundary
of time. As we can see, the value of F1-score metric of the subtask
B is much lower than the subtask A, which demonstrates the diffi-
culty of identifying the boundary of the sound in audio by training
the model with only the weak annotation.

4. CONCLUSION

In this paper, we presented a novel weakly-supervised framework to
enforce the deep learning network by discriminating to meticulous
detail of each sound. Extending a recent convolutional neural net-
work for acoustic event classification, we add the branch of network
for directly predicting a acoustic event of each frames by training on
only weak annotations data. Our experiment on three tasks shows
that our network outperforms the baseline system in acoustic scene
classification and weakly supervised sound event detection. More-
over, The proposed network can be added on any CNN structure,

Table 3: Experimental result of subtask B for sound event detection
with timestamps

Segment-based metric Baseline frameCNN
Error rate (ER) 1.02 0.86
F1-score 13.8% 32.8%
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and only requires substantially fewer parameters and less computa-
tion to achieve state-of-the-art performances.
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