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ABSTRACT

A system for the automatic classification of acoustic scenes is
proposed. This system calculates the spectral distribution of en-
ergy across auditory-relevant frequency bands and obtains some
descriptors of the envelope modulation spectrum (EMS) by ap-
plying the discrete cosine transform to the logarithm of the EMS.
This parametrisation scheme achieves good separation among scene
classes, since it gets good classification results with a simple clas-
sifier consisting of a multilayer perceptron with only one hidden
layer.

Index Terms— Acoustic scene classification, modulation spec-
trum, multilayer perceptron

1. INTRODUCTION

The automatic classification of acoustic scenes, or computerised
acoustic scene recognition (CASR) [1] aims at recognising the con-
text in which a given acoustic signal is produced. While its objec-
tives are different from those of computerised auditory scene analy-
sis (CASA), both CASR and CASA share some common challenges
and can thus be considered close to one another [2].

A significant portion of CASR system proposals are based on
parametrisation schemes which describe the signal in either spec-
tral [3, 4, 5, 6] or cepstral domain [3, 7, 8, 9]. Consistently with
CASA approaches for modelling the peripheral auditory system,
all the cited proposals include spectral analyses with greater band-
widths for higher frequencies. While the temporal dimension of
perceived signals seems to be key for perception, only [9] among
the previous works included modelling of the temporal evolution of
the parameters in the set of proposed features. Alternative options
for considering the temporal dimension in the classification scheme
imply designing classifiers with time-varying outputs such as recur-
rent [3], convolutional [4] or time-delay neural networks [9].

In other applications of acoustic signal processing, such as
speaker recognition, the temporal dimension is modelled by cal-
culating frame-to-frame variations of parameters [10], the so called
∆ (short for 1st derivative) and ∆∆ (2nd derivative) parameters.
However, these are of limited value in the case of sound event de-
tection, since ∆∆ parameters added no significant improvement to
the results in [11]. The problem of CASR is closely related to the
problem of sound event detection [1]; therefore, this limited infor-
mative value of fast variations in parameter values is to be expected
also in CASR.

In this paper, we propose a system for the classification of
acoustic scenes based on features obtained from the envelope mod-
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# Class name Complementary information
1 Bus Travelling by bus in the city
2 Café/Restaurant Small café/restaurant
3 Car Driving or travelling as a passenger
4 City centre Outdoor
5 Forest path
6 Grocery store Medium size grocery store
7 Home
8 Beach Lakeside beach
9 Library

10 Metro station Indoor
11 Office Several people, typical working day
12 Residential area Outdoor
13 Train Travelling
14 Tram Travelling
15 Urban park Outdoor

Table 1: Classes of acoustic scenes: 4 vehicle, 6 indoor, 5 outdoor.

ulation spectrum (EMS) [12] calculated using a gammatone filter-
bank [13]. These features are used as inputs for a simple multilayer
perceptron (MLP) with only one hidden layer and as many softmax
outputs as classes of acoustic scenes to be recognised [14].

2. MATERIALS

Audio recordings correspond to the TUT Acoustic Scenes 2017
dataset [15]. This dataset consists of recordings captured at dis-
tinct locations and split into 10-second segments. The duration of
recordings ranged from 3 to 5 min. A Roland Edirol R-09 wave
recorder and a Soundman OKM II Klassik/studio A3 binaural mi-
crophone were used for recording, hence producing a stereophonic
signal. The microphone response can be considered flat between
20 Hz and 20 kHz. Recordings were captured with sampling rate
equal to 44.1 kHz and 24 quantization bits. Each recording location
corresponded to one of the classes listed in Tab. 1.

3. SIGNAL ANALYSIS

The two audio channels comprising each recoding were first com-
bined to produce an alternative two-channel representation in which
the first channel corresponded to the average of both original chan-
nels and the second transformed channel corresponded to the abso-
lute value of the difference between the original channels. After-
wards, each transformed channel was split in frames with duration
0.5 seconds, and 50% overlap between consecutive frames.

Each frame was processed by a filter-bank consisting of 40
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Figure 1: Frequency responses of the filters in the filter-bank with
central frequencies up to 3.5 kHz (25 filters).

gammatone filters [13] with central frequencies ranging from 27.5
Hz to 17.09 kHz. The central frequencies of the filter-bank were
chosen so that the pass-bands of contiguous filters were adjacent
but not overlapping, i.e. the upper cut-off frequency of one filter
was the same as the lower cut-off frequency of the next. Figure 1
illustrates the frequency responses for the first filters.

In CASA systems, the filter-bank modelling the cochlear fre-
quency behaviour is followed by a non-linear model of neurome-
chanical transduction [16]. This non-linear system approximately
performs compression of the higher signal peaks and half-wave rec-
tification [17]. As this produces a too detailed set of signals, it is
usual to apply low-pass filtering and decimation afterwards [18].
The implementation of this model is computationally expensive due
to its non-linearities. For this reason, we substitute it by full-wave
rectification followed by a 5th order Butterworth low-pass filter
with cut-off frequency equal to 80 Hz and decimation to yield a
sampling frequency equal to 200 Hz.

Each resulting frame is further processed by computing its dis-
crete Fourier transform (DFT). The EMS [12] is obtained by stack-
ing the square modulus of the DFT corresponding to the 40 gam-
matone filters. In order to reduce the dimensionality of the EMS,
its components corresponding to the fastest variations of the sig-
nal were discarded. Specifically, a threshold of 24 Hz was set for
the modulation frequency. Therefore, each signal frame was repre-
sented by a matrix, i.e. EMS, of 40×13 elements. Figure 2 depicts
the two EMS corresponding to 0.5 s of recording in a residential
area. The first data column represents the average energy at the
output of each gammatone filter, while the remaining 12 columns
represent the energies of amplitude modulations at 2 Hz, 4 Hz, etc.

The signal analysis scheme described so far transforms the au-
dio recorded during 0.5 seconds into a feature vector of 40 × 13 ×
2 = 1040 components. The dimensionality of this feature space
was reduced as follows. As stated before, the first column in the
EMS (see Fig. 2) corresponds to the average energy at each fre-
quency band. This is relevant for discriminating among certain
types of acoustic events [11], so the corresponding 40 values for
each EMS were kept unchanged. Similarly to the approach in [19],
the remaining 12 columns of each EMS were processed as if they
were a grey-scale image. Specifically, the two-dimensional discrete
cosine transform (DCCT) [20] of the logarithm of the EMS was
calculated, and the block corresponding to the first 7 × 7 DCT co-
efficients was chosen as a lower-dimensional representation of each
40 × 12 EMS. Therefore, after this dimensionality reduction, each
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Figure 2: EMS (in dB) of the two transformed channels correspond-
ing to one frame of audio recorded in a residential area.

audio frame of duration 0.5 s was represented by a feature vector
with (40 + 49) · 2 = 178 components.

4. CLASSIFICATION

The afore-mentioned feature vectors were used as inputs for a mul-
tilayer perceptron (MLP) with only one hidden layer comprising 20
hidden neurons. The selected activation function for these hidden
neurons was the hyperbolic tangent due to its symmetry. The output
layer was formed by 15 neurons, one corresponding to each class in
Tab. 1. These output neurons had softmax activation functions [14].
Thus, their outputs corresponded to the estimated a posteriori prob-
abilities of the input feature vector, or the 0.5 s frame, corresponding
to each scene class.

The overall a posteriori probability of each class for a 10 s au-
dio segment was estimated by multiplying the probabilities of its
frames. Similarly, the probabilities associated to the full recordings
were calculated by multiplication of the probabilities of their cor-
responding segments. For all frames, segments and recordings, the
class assigned by the MLP was estimated to be the class yielding
the highest a posteriori probability.

5. EXPERIMENTS & RESULTS

Two classification experiments were run using the system described
so far. In the first experiment, all recordings were randomly di-
vided into training (80%) and test (20%) sets. Care was taken to
ensure that all classes were present in both sets in the same propor-
tion. This experiment was repeated for five times, with new sets
randomly chosen for each repetition.

The second experiment consisted in the baseline evaluation pro-
cedure proposed for the acoustic scene classification challenge in
DCASE 20171[21].

1http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-acoustic-scene-
classification
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5.1. First experiment

The results of the first experiment are summarised in the graphs
of Fig. 3. These represent the correct classification rate (CCR) of
frames, segments and recordings belonging to each scene class. The
average CCR (Overall) is also plotted for reference in each graph.

One can observe that the CCR tends to improve as the length
of the processed audio signals is increased. For all classes except
for Urban park, the CCR for segments is greater than for frames,
with values over 75%. In contrast, the Urban park yields the worst
results, which are fairly independent from signal length (58%). The
overall CCR reaches 90% for full recordings.

5.2. Second experiment

The confusion matrix corresponding to the second experiment is
in Tab. 2. The overall CCR for audio segments is 79.8%. It is
noteworthy that some of the highest error rates happen between
classes that may be difficult to distinguish even for a human lis-
tener: Urban park vs Residential area, Train vs Tram, Grocey store
vs Café/Restaurant, Home vs Library.

6. CONCLUSIONS

This paper presents a system for the automatic classification of
acoustic scenes based on the EMS. The proposed system exploits
the availability of two channels in the stereophonic recordings by
computing the average and the absolute difference of both chan-
nels and processing them independently. Features from both signals
are subsequently combined to build a feature vector for each audio
frame.

The signal analysis scheme was designed taking into account
several issues. The first stages of the system are a simplification of
the peripheral auditory system [18]. The specific responses of the
gammatone filters were chosen so that the filter-bank fully covered
the pass-band of the microphone. The average energy at the out-
put of each filter was kept as a feature, hence accounting for the
relevance of the energy spectrum for acoustic event detection [11].
Slow modulations of these energies were described by reducing the
dimensionality of the EMS using the DCT, a common-use tool for
data compression in image processing [20].

The reported results indicate a good performance of the system
(CCR≈ 75% at segment level), except for the Train and Urban
park classes (CCR≈ 57 − 59%). The graphs in Fig. 3 show that
classification results improve as longer audio signals are processed.
This implies that there are audio frames much more relevant for
the identification of acoustic scenes than the rest. In other words,
some acoustic scenes seem to be especially characterised by certain
acoustic events. If recordings are made long enough for such events
to happen, then the classification accuracy can be increased.

Results from the second experiment (Tab. 2) are better than the
baseline system provided in DCASE 2017. In addition, it should be
noted that some of the highest error rates happen between classes
that can be difficult to identify for human listeners.

Last, the adequacy of the proposed signal processing system to
the problem of acoustic scene classification is suggested by the fact
that good classification results can be achieved even with a simple
classifier consisting of a MLP with only one hidden layer.

Figure 3: Correct classification rate for the test sets of the first ex-
periment.
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Assigned class #
True class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bus 94.2 0 2.2 0 0 0 0.6 0 0 0 0 0 0.6 2.2 0
Café/Restaurant 0 70.2 0 1.3 0 11.5 7.7 0 1.9 5.1 0 0 1.6 0.6 0

Car 1.0 0 95.5 0 0 0 0 0 0 0 0 0 1.9 1.3 0.3
City centre 0 0.6 0 88.5 1.0 0.6 0 1.28 0 1.0 0 4.8 0 0 2.2
Forest path 0 0.6 0 1.9 87.8 0 1.0 0.6 0 0 0 6.1 0 0 0.3

Grocery store 0 8.0 0 0 0 82.7 0.6 0 0 7.1 0 1.6 0 0 0
Home 0.6 1.3 0 0 0 1.9 77.0 0 9.1 0 9.8 0 0 0.3 0
Beach 0 0 0.3 0 2.6 0.3 1.0 79.8 0 0 0 13.8 0 0 2.2

Library 0 0.3 0 0 0 1.3 9.6 0 80.5 0.6 0 0.6 5.5 1.6 0
Metro station 0 2.9 0 0.6 0.6 4.2 0 0 6.7 80.8 0.6 0 0.6 0 0

Office 0 0 0 0 0 0 5.8 0 0.3 1.6 92.3 0 0 0 0
Residential area 0 0.6 0 6.7 2.9 0 0 0.6 0 0.3 0 69.9 0.6 0 18.3

Train 3.5 8.65 2.2 5.1 0 0 0.3 0.3 0.6 1.6 0 2.9 57.4 17.0 0
Tram 1.9 0.3 0 0 0 6.7 0 0 1.0 0 0 0 9.3 80.8 0

Urban park 0 2.6 0 5.8 0 0 1.3 4.5 0 0 0 26.6 0 0 59.3

Table 2: Confusion matrix (in %) for the second experiment. Class numbers in column headers correspond to the order in Tab. 1. Note that
rows corresponding to Forest path, Metro station and Train do not sum up 100% because no class was assigned to audio segments with all
their frames containing recording errors.

Class CCR (%)
Bus 46.3

Café/Restaurant 47.2
Car 76.9

City centre 88.9
Forest path 65.7

Grocery store 48.1
Home 95.4
Beach 61.1

Library 35.2
Metro station 63.0

Office 24.1
Residential area 63.9

Train 75.0
Tram 53.7

Urban park 29.6

Table 3: Correct classification rate (CCR) corresponding to the
DCASE 2017 evaluation results.

APPENDIX: EVALUATION RESULTS

Performance of the proposed system for the DCASE 2017 evalua-
tion dataset is reported in [22]. The overall accuracy was 58.3%.
Per-class results are summarised in Tab.3.
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