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ABSTRACT

In this report, we describe three systems designed at BOSCH for
rare audio sound events detection task of DCASE 2017 challenge.
The first system is an end-to-end audio event segmentation using
embeddings based on deep convolutional neural network (DCNN)
and deep recurrent neural network (DRNN) trained on Mel-filter
banks and spectogram features. Both system 2 and 3 contain two
parts: audio event tagging and audio event segmentation. Audio
event tagging selects the positive audio recordings (containing au-
dio events), which are later processed by the audio segmentation
part. Feature selection method has been deployed to select a sub-
set of features in both systems. System 2 employs Dilated convo-
lutional neural network on the selected features for audio tagging,
and an audio-codebook approach to convert audio features to audio
vectors (Audio2vec system) which are then passed to an LSTM net-
work for audio events boundary prediction. System 3 is based on
multiple instance learning problem using variational auto encoder
(VAE) to perform audio event tagging and segmentation. Similar
to system 2, here a LSTM network is used for audio segmentation.
Finally, we have utilized models based on score-fusion among dif-
ferent systems to improve the final results.

Index Terms— Audio event detection, DCNN, DRNN, VAE,
Audio2vec

1. SYSTEMS DESCRIPTION

In this technical report, we have introduced three systems proposed
for rare sound event detection task of DCASE 2017 challenge [1].
The performance of the proposed systems are evaluated on the pro-
vided development set in the challenge website.

1.1. Systeml: CNN+RNN embeddings based system

Convolutional Neural Network (CNN) architectures for audio clas-
sification using the log-Mel spectrogram as features are being in-
creasingly used [2, 3]. CNN’s are naturally suited to exploit image-
like log-Mel spectrograms to learn and identify both high-level and
low-level features. In [3], CNN architectures were applied for large
scale classification of audio. It was shown that classifiers that used
the embeddings learned from the pre-final layer of the CNN pro-
duced impressive results for audio classification. Recurrent Neural
Networks (RNN’s) are another network choice that are useful for
exploiting temporal dependencies in audio. Conditioning on previ-
ous and future frames, as in a bi-directional Gated Recurrent Unit
(GRU) which can help to better localize the event in the clip. Based
on this approach, we train CNN’s, RNN’s and plain Deep Neu-
ral Nets (DNN) in various capacities for audio classification at the
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Figure 1: Deep CNN with a single-frame spectrogram input.

frame level. However, instead of dumping embeddings learned for
each sample and using them as input features to another separate
classifier, we attach a few fully connected layers to the end of the
final convolutional layer (or GRU layer, in case of an RNN), and
train the system end-to-end. Next, we predict audio class at a frame
level using the Deep CNN (DCNN) and Deep RNN (DRNN) net-
work ensemble. Our DCNN and DRNN structures are detailed in
figures 1 and 2.

Based on the experiments, in case of the events babycry and
glassbreak, the DNN gives only slightly inferior performance to the
deep CNN and deep RNN networks, but falls well short in the case
of gunshot detection.

1.2. System2: Audio2Vec based system
Acoustic features

System 2 and system 3 both employ 30-dimensional features se-
lected from a pool of 272-dimensional features summarized in table
2. We have used random forest based feature selection method to
chose the best subset for each class.
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Figure 2: Deep RNN with spectrogram inputs.

DCNN based audio tagging

In this approach Dilated convolution neural network [4, 5] is ap-
plied for audio tagging. The goal is to identify if the target events
are present in a 30 second audio clip. Compared to regular convolu-
tion layer (in CNN) with larger filters, Atrous convolution layer [5]
(dilated filter) allows to effectively enlarge the field, covered by fil-
ters without increasing the number of parameters or the amount of
computation. Since, for audio tagging we want to use larger filters,
but have limited train samples, Atrous convolutions performs better
compare to CNN. To progressively reduce the amount of features
and the computational complexity of the network, Max pooling is
used. Size of the Max pooling windows and strides are determined
through iteration. Two fully connected dense layers are attached
with the Atrous convolutions, which make binary event tagging de-
cision, taking embeddings learned by Atrous convolution layers.

Audio2vec+LSTM based audio segmentation

In Audio2vec system, 30 second audio clips from the datasets are
segmented into small frames (iterated between 100 to 500ms). Fea-
tures from Table 2 are extracted for each of these small frames.
Next, in the feature modeling stage a representation of the speech
is developed that reflects the information for the specific task. Sim-

Table 1: Low level descriptive features and functionals computed
on audio data; min: minimum; max: maximum; std: standard devi-
ation; var: variance.

Features Functionals
Min
Max
Zero crossing rate & A std
Energy & A var
Spectral centroid & A skew
Pitch & A kurtosis
MFCC & A mean
median

16 November 2017, Munich, Germany

1,0 L1 1,0 11
[+ o [+] A
°® °
® I} [ o Cluster
e ® ® centroid
. . °
L .
. .
0,0 0,1 0,0 0,1

1,0

! 11 1,0 1,1

o [
o 0o
[ ] Q ® o
®
® ® ®
* “" Cluster [ ]
centroid *
[ ] *
0,0 0,1 0,0 0,1

Figure 3: Audio2vec approach

ilar to [6], the state of audio in the small frames, audio words, are
represented via K-means based Audio-Codebook model.

Since, audio signals from targeted audio events are different
from other events, audio states representing these events should be
different from others. Also, some states occurs more frequently
in the targeted event signals compare to other events. To identify
and exploit these frequently or uniquely occurring audio states as
features in our approach, we developed a novel audio word to vec-
tor conversion (Audio2vec approach), that generates audio word to
vector dictionary.

Audio2vec dictionary generation approach, assigns an N-
dimensional vector for each of the audio words representing the
small frames of audio. In the initialization stage of vector gener-
ation, similar vector representations are assigned to audio words
which uniquely occur on our targeted event, and similar vector rep-
resentations are assigned to audio words which never occur on our
targeted event. Audio words which are common, are assigned ran-
dom vector representations. Figure 3 shows an example of our
approach, where vector dimension is N=2. In Figure 3 (a), black
points are the vectors (audio words) unique for targeted events,
white points are ones never occurs in the targeted events, and the
grey ones are common between two classes. Later, in the iterative
stage of Audio2vec, every time an audio word (representing audio
stage) occurs in the targeted event in training set, a small fragment
of the cluster centroid of black points are added with the vector rep-
resentation of that audio word, which moves that audio word closer
to the targeted event clusters in the vector space, as shown in Fig-
ure 3 (c). Similarly, if an audio word occurs for non-targeted events,
centroid of the white points are added with its vector representation,
hence, moved farther from the targeted event clusters. As shown in
Figure 3 (d), Audio2vec approach bring words (audio stages) oc-
curing in our targeted events uniquely or more frequently closer in
the vector space compare to others.

An overview of our audio segmentation system is shown in
Figure 4. We segment 30 second audio into small frames and ex-
tract acoustic features (From Table 2). Feature representation from
a small frame is converted to audio word using Audio-Codebook
approach. Our Audio2vec dictionary (generated), converts audio
words to vector representations. Generated Audio2vec vectors from
small audio segments are then used as features in a many-to-many
LSTM, which predicts the location of targeted event.
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Figure 4: Overview of Audio2vec audio segmentation

1.3. System3: VAE based system

In this section, a novel weakly supervised deep learning structure
is proposed for audio tagging to detect if an audio event exists in a
given input and estimate its time boundary. This method is based on
Variational Autoencoder (VAE) network for learning feature repre-
sentation in the multiple instance learning (MIL) setting. In MIL
framework, an input data (bag) is tagged as positive when at least
one of the instances in the bag is a positive example. On the con-
trary, a bag is tagged as negative if all the instances in the bag are
negative. This framework fits audio tagging task in which only a
part of the audio contains the target event. To reformulate audio
tagging problem into MIL framework, each audio recording is as-
sumed as a bag and a fixed length window (e.g. 0.5 second) as
instance.

Variational autoencoder (VAE) [7] is a directed graphical model
consisting of encoder and decoder. In the encoder part, the input
data is mapped to a latent representation p(z| X ), and in the decoder,
the latent representation is mapped back to the data space p(X|z).
The VAE loss function is defined as:

Lvar = KL(g(2|X) [| p(2)) = Eq(z1x) [log p(X[2)] (1)

By regularizing the encoder with a prior over the latent distri-
bution p(z), z ~ N(0, I) where I is identity matrix, the VAE keep
the representation z of different data sufficiently diverse.

By training two VAE networks, one on all instances from both
positive and negative bag samples, VAF 1, and the other on nega-
tive bag samples only, VAE_, we estimate the posterior of p(z|X)
and p(z|X,Y = —1), noted as VAE+ and VAE_, respectively.

The proposed VAE structure is summarized in Figure 5, which
consists of two VAEs sharing the same configuration, and a classi-
fier network that take the latent layer in VAEs as inputs. The overall
loss of the network consists of Lvap,, Lvap_ and the binary
cross-entropy loss for classifier Lc;y.

During training, difference between the two posterior estimates
qry llgn_ and Lvae,, Lvae_ is maximized using Lo y. Train-
ing samples to VAFE+ network are randomly chosen from all the
negative and positive, and the input to VAE_ is randomly chosen
from negative instances only. During training, different positive and
negative instance pairs are included. We also use the normalized re-
construction error from the VAE_ as sample weight to reduce the
loss when the sample can be well reconstructed by the VAE—.

We have implemented our method in keras. RMSprop opti-
mizer and a fixed learning rate of 0.001 and momentum of 0.9 are
used throughout all the experiments. The networks wights are ini-
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Figure 5: Variational autoencoder based feature representation dia-
gram.

tialized to zero mean Gaussian noise with a standard deviation of
0.01.

Two VAE network are trained to learn a better representation of
the instances. However, bag-level features are required for classifi-
cation task. As a result, maximum, minimum, standard deviation,
mean and median encoding value along each latent dimension are
extracted as bag-level representation.

As mentioned before, audio tagging problem is reformulated to
MIL framework by assuming each audio recording as a bag and 0.1
or 0.5 second window as instance. The instance-level representa-
tions are fed to VAE networks to extract the bag-level features to
train the classifier. In total, we have 500 audio bags with 148 or 599
instances in each bag (depending on the window length), and each
instance is a 30 dimension feature vector.

Next, only positive outputs of the audio tagging pipeline will be
processed for audio segmentation. To perform audio segmentation
with VAE representation, the encoded features are fed to a many-to-
many LSTM network to detect the time boundaries of audio signal.

1.4. Performance Evaluation

The evaluation results on the released development set for all the
systems are summarized in Table 2. F-score and error rate (ER) are
calculated based on the evaluation toolkit provided by the challenge.

For system1 evaluation, three different networks are compared:
DNN, DCNN, and DRNN. For DNN architecture, 64 Mel-band fea-
tures and their delta and acceleration coefficients with 3 context
frame-concatenation from 40 ms windows with 50% overlap are
used as input. A three layer network with [100,100,50] nodes in the
hidden layers with drop-out and batch normalization [£] is utilized
in the experiments. We trained this architecture for 5 epochs with a
fixed learning rate of 0.003 and stochastic gradient descend (SGD)
optimization. The network gives F-score of 84% for babycry and
91% for glassbreak. However, using this structure we could not get
any reasonable performance for the gunshot class.

In DCNN structure, 128x 16 rectangular spectrogram patches,
128 Mel-bands and 16 frame context are extracted from 100 ms
windows with 80% overlap as input features. DCNN is trained in an
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Table 2: F-score(%) and error rate (ER)(%) of audio event segmentation task; tag: audio tagging; seg: audio segmentation; sys-
tem1:DCNN+DRNN; system2: CNN tag+Audio2vec seg; system3:VAE tag+VAE seg; dev: development set; eval: evaluation set

Task Audio event segmentation
Method DCASE2017 Baseline || VAE tag+VAE seg || CNN tag+Audio2vec seg DCNN+DRNN
dev dev dev dev eval

F-score ER F-score ER F-score ER F-score | ER | F-score | ER
Baby cry 72.0 0.67 84.7 0.30 922 0.16 89.5 0.17 75.9 0.5
Glass break 88.5 0.22 94.1 0.12 94.5 0.11 94 0.12 87.8 0.24
Gun shot 574 0.69 87.1 0.24 89.9 0.2 80 0.22 71.9 0.54
Average 72.7 0.53 88.6 0.22 92.2 0.16 87.83 0.17 78.6 0.43

Table 3: F-score(%) and accuracy(%) of fusion systems for audio event segmentation; dev: development set; eval: evaluation set

Task Audio event segmentation
Method Binary fusion+VAE Binary fusion+Audio2Vec
dev eval dev eval

F-score | ER | F-score | ER | F-score | ER | F-score | ER
Baby cry 922 0.16 78.8 0.41 91.8 0.17 78.0 0.43
Glass break 94.3 0.12 91.5 0.16 91.5 0.11 87.5 0.24
Gun shot 87.1 0.24 52.3 0.93 89.9 0.2 49.8 0.98
Average 91.2 0.17 74.2 0.5 92.1 0.16 71.8 0.55

supervised setting. We tried to have a similar structure as VGG net-
work [9]. However, due to the relatively small size of the dataset, we
used only four 2D convolutional layers, with [16,16,32,32] learned
square 3 x 3 kernels and Max pooling layers. We experimented with
rectangular kernels, with higher strides along the frequency domain,
but observed no improvement. Similar to DNN, this network is also
optimized with SGD method. The DCNN network results F-score
of 87% for babycry and 93% for glassbreak, and 79% for gunshot.

For the DRNN network, 64 Mel-band features from 120 ms
window with 50% overlap and a 3 frame context is used, with the
sequences of length ~475 for a 30s audio clip. A bidirectional
GRU’s with SGD is trained, primarily avoiding LSTM’s to control
the number of parameters. le-4 regularization, and batch normal-
ization with drop out are also utilized. The two stacked GRU layers
output [256,128] dimensional hidden layers followed by [100,50]
dimensional DNN hidden layers. We use sigmoid outputs for the
output layers on all our networks, and relu activations on all other
layers. This network gives F-score of 88% for babycry and 93% for
glassbreak, and 75% for gunshot.

For Dilated CNN based audio tagging system, a three layer net-
work with [50,50,50] nodes in the hidden layers with 20% drop-out
rate and batch normalization is utilized in the experiments. Max
pooling with pool size 2x2 strides is used. Two dense layer has
been attached (with [20,1] nodes) with the Dilated CNN. We train
this architecture with 20 epochs, with mean squared error loss func-
tion and RMSprop optimization. This network achieves 92%, 96%
and 88% audio tagging F-score for events: baby cry, glass break
and gunshot, respectively.

For Audio2vec vector generation, we generated vector of size
30, for each of the events, and perform 30 iteration of the Audio2vec
feature separation approach.

For Audio2vec audio segmentation, two two-layer LSTM net-
work with [50,50] nodes in hidden layers with 20% drop-out rate
and batch normalization is utilized in the experiments. One two-
layer LSTM network takes raw audio features and another takes
generated Audio2vec vectors as input. These two LSTM networks
are merged together, and a TimeDistributed dense layer is attached

to generate many-to-many output for each of the small segments
of the audio. We train this architecture with 30 epochs, with mean
squared error loss function and RMSprop optimization. This net-
work achieves 92.1%, 94.5% and 89.9% audio segmentation F-
score for events: baby cry, glass break and gunshot, respectively
(shown in table 2).

For VAE based audio tagging, we have trained two VAE net-
works with [512,256,512] hidden units and a 2-layer classifier with
[64,64] hidden units shown in Fig. 5 in the ”Training” box. For the
final classifier, radial basis function (RBF) kernel SVM has shown
superior performance in audio tagging task compare to other classi-
fiers such as: k-nearest-neighbor (KNN), linear kernel SVM, neural
net, etc. We use the RMSprop optimizer, a fixed learning rate of
0.001, momentum of 0.9, relu activation function, 512 batch size
and drop out rate of 0.25 throughout our experiments. The VAE
network results 89%, 96% and 85% F-scores for baby cry, glass
break and gunshot event, respectively.

Next, only the positive audio recordings (containing the target
audio events) are processed via the VAE segmentation system. The
VAE segmentation system structure is similar to the VAE tagging
one with the difference that the latent representation from VAF
is used as input to a many-to-many LSTM network to detect the
target events boundaries. The many-to-many LSTM structure here
is similar to the one used in system 2. System 3 leads to final results
of 84.7%, 94.1% and 87.1% F-scores for baby cry, glass break and
gunshot event, respectively.

Finally, to further improve the results linear SVM based fusion
system is used to combine the binary predictions of system 2 and
3. Given the results shown in Table 3, fusion system improves
the final event detection systems with 91.2% and 92.1% average F-
score for VAE-based and Audio2vec-based segmentation systems,
respectively.
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