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ABSTRACT

This report provides a solution for the task 1 of DCASE 2017 chal-
lenge. We build two parallel audio scene classification systems –
LightGBM and VGG-net. Their prediction scores are output respec-
tively from the multichannel version of the TUT Acoustic Scenes
2017 dataset. We perform a linear logistic regression method to
fuse the (1) LightGBM, (2) VGG-net and (3) LightGBM+VGG-net
multichannel scores. Finally, three outputs from the fused systems
are submitted for the challenge. The evaluation is done on the de-
velopment set.

Index Terms— Acoustic scene classification, LightGBM,
VGG-net, linear logistic regression late fusion

1. INTRODUCTION

This report provides a solution for the task 1 of DCASE 2017 chal-
lenge 1 - acoustic scene classification, of which the goal is to classify
a test recording into one of the predefined classes that characterize
the environment in which it was recorded.

This submission (sub2) differs from “Acoustic scene classifi-
cation by ensembling gradient boosting machine and convolutional
neural networks” (sub1) regarding the following points:

• The multichannel version dataset is used in sub2; the mono
down-mixed version dataset is used in sub1.

• The VGG-net experiment in sub2 is carried out by using a
“homemade” setup; a two-layers multiple filter shapes convo-
lutional neural networks is implemented by using the official
experiment framework in sub1.

• The linear logistic regression fusion model is used in sub2; an
arithmetic mean fusion is used in sub1.

This solution trains two parallel classification models - gradient
boosting machine (LightGBM2, section 3.2) and convolutional neu-
ral networks (VGG-net [1], section 3.3) on the four channels ver-
sion (section 3.1) of the TUT Acoustic Scenes 2017 dataset (section
2). To yield the predictions on the evaluation dataset, we late-fuse
the prediction probabilities of two models by using a linear logistic
regression model (section 3.4).

2. DATASET

We use the TUT Acoustic Scenes 2017 dataset, which is split into
a development dataset and an evaluation dataset, of 4680 and 1620

1http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-acoustic-scene-
classification

2https://github.com/Microsoft/LightGBM

audio recordings respectively. The development dataset is provided
at the beginning of the challenge, together with ground truth. It in-
cludes 15 acoustic scenes3 each of them containing 312 recordings
of 10s. A four-fold cross-validation setup is provided so as to make
results reported strictly comparable.

3. SYSTEM DESCRIPTION

3.1. Multichannel audio preprocessing

The audios in the dataset were recorded by using a binaural micro-
phone. To take advantage the multichannel information embedded
in this dataset, we extract four monoaural versions from each audio
file:

• Left channel
• Right channel
• Average channel: (left channel + right channel) / 2
• Difference channel: (left channel - right channel) / 2

3.2. LightGBM system

Gradient boosting machine [2] is a powerful technique for building
predictive models. It selects a loss as the objective function, and
uses the addictive model of many weak learners—typically regres-
sion trees—to minimize the loss. The parameters of added trees
are tuned by a gradient descent algorithm. There are two GBM
frameworks which are used widely in the data science community:
XGBoost [3] and LightGBM. The former is very popular among
Kaggle community where it has been used for many competitions.
The latter is a newcomer, which includes several improved features:

• It uses histogram based algorithms, which aggregates continu-
ous features into discrete bins, to speed up training and reduce
memory usage.

• It grows the tree by leaf-wise, which can reduce more loss than
the level-wise algorithm.

In our experiments, we also found that LightGBM is faster than
XGboost on training and achieves a slightly better overall classifica-
tion accuracy. In consequence, we choose LightGBM as the GBM
framework for the experiment.

3A list of the scenes together with more details about the dataset can
be found in http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-acoustic-
scene-classification.
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3.2.1. Feature Extraction and Pre-processing

To consider the temporal characteristics, we segment each multi-
channel recording into 10 equal length non-overlapped sequences.
We then extract features on each sequence using FreesoundExtrac-
tor4, a feature extractor from Essentia open-source library for audio
analysis [4]. This extractor is originally used by Freesound5 in order
to provide sound analysis API and search by similar sounds func-
tionality. It allows calculating hundreds of sound and music fea-
tures. However, we discard some music-related features in rhythm,
key, chords and tonal categories since we do not observe much mu-
sical trait in the development dataset. We further discard some fea-
ture statistics such as histogram and covariance matrix due to their
high dimensionality and sparsity. The selected features and their
dimensionality are listed in Table 1. The features are calculated on
frame-level by using a 4096 samples frame size and a 2048 samples
hop size. All other parameters are set to FreesoundExtractor de-
fault values. We then perform four statistical aggregations—mean,
variance, mean of the derivative and variance of the derivative—to
the frame-level feature vector of each sequence. Finally, a R820x1

(205×4) feature vector is output for each sequence. In the cross-
validation experiment, we fit a mean and variance standardization
scaler for each fold by using the features of the training set, which
is then used for scaling the training and test set. In the final predic-
tion step, we fit a standardization scaler for the whole development
dataset and then apply it to the evaluation dataset.

Table 1: Selected features extracted by FreesoundExtractor. Dim:
dimensionality.

Feature name Dim Feature name Dim
Bark bands energy 32 Tonal features 3
ERB bands energy 23 Pitch features 3
Mel bands energy 45 Silence rate 3
MFCC 13 Spectral features 32
HPCP 38 GFCC 13

3.2.2. LightGBM Parameters

Since ASC is a multiclass classification problem, we use logarith-
mic loss as the objective function, which yields a R15x1 prediction
probability for each sequence. The three most important parameters
are set as i) Learning rate: 0.05, ii) Number of trees: 500 iii) Num-
ber of leaves: 255. All other parameters are default values. All pa-
rameters are held unchanged through the 4-fold cross-validation ex-
periment and the model for the prediction of the evaluation dataset.

We keep all 820 dimensions features because according to our
pilot experiment, to remove irrelevant features only affected the
training speed rather than improved the prediction accuracy. The
parameter tuning process has also been simplified because several
techniques [5] in LightGBM such as weak learner, Taylor approxi-
mation of the loss function and bagging, make the system robust to
over-fitting.

3.3. VGG-net system

In this section, we describe the convolutional neural network system
– VGG-net. This architecture is taken from the paper [6]. However,

4http://essentia.upf.edu/documentation/extractors out of box.html
5https://freesound.org/

some minor changes have been done to adapt it to our input repre-
sentation.

3.3.1. Input representation and preprocessing

We use the 96 bands log-mel energies as the network input repre-
sentation, which is calculated by Essentia open-source library [4] as
follows:

1. We calculate the short-time Fourier transform (STFT) with
2048 frame size and 1024 hop size on the multichannel
recordings.

2. The STFT spectrogram is then used to calculate the 96 bands
Mel energies with an 11 kHz high frequency bound.

3. The Mel energies are converted finally to the log scale by
using the formula log(100000 ·Mel + 1).

We then segment the log-mel spectrogram of each recording
into 10 equal length non-overlapped sequence, each contains 43
frames. In the cross-validation experiment, we fit a mean and vari-
ance standardization scaler for each fold by using the log-mel rep-
resentations of the training set, which is then used for scaling the
training, validation and test set. In the final prediction step, we fit
a standardization scaler for the whole development dataset and then
apply it to the evaluation dataset.

3.3.2. Architecture

The VGG-net architecture is depicted in table 2. All convolutional
layers are initialized by He uniform initializer and regularized by
l2 regularizer with a parameter of 1e − 5. The loss function is cat-
egorical cross-entropy and the optimizer is ADAM. The system is
implemented using the Keras library6.

Table 2: VGG-net architecture; BN: Batch Normalization; ELU:
Exponential Linear Unit.

Input 1×43×96
5×5 Conv(padding:same)-32-BN-ELU
3×3 Conv(padding:same)-32-BN-ELU

2×2 Max-pooling + Drop-out(0.3)
3×3 Conv(padding:same)-64-BN-ELU
3×3 Conv(padding:same)-64-BN-ELU

2×2 Max-pooling + Drop-out(0.3)
3×3 Conv(padding:same)-128-BN-ELU
3×3 Conv(padding:same)-128-BN-ELU
3×3 Conv(padding:same)-128-BN-ELU
3×3 Conv(padding:same)-128-BN-ELU

2×2 Max-pooling + Drop-out(0.3)
3×3 Conv(padding:valid)-512-BN-ELU

Drop-out(0.5)
1×1 Conv(padding:valid)-512-BN-ELU

Drop-out(0.5)
1×1 Conv(padding:valid)-15-BN-ELU

Global average pooling
15 way Soft-max

6https://github.com/fchollet/keras



Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

3.4. Late fusion

For each predicting sequence, both LightGBM and VGG-net sys-
tems output a R15x1 probability score. Thus, for the four chan-
nels, we obtain in total 8 scores: probaleft

LightGBM, probaright
LightGBM,

probaaverage
LightGBM, probadifference

LightGBM, probaleft
VGG−net, probaright

VGG−net,
probaaverage

VGG−net, probadifference
VGG−net. To fuse these scores on the evalu-

ation dataset, we use linear logistic regression late fusion method,
which has been implement in FoCal multi-class MATLAB toolkit7.
This fusion method has been used also in paper [6].

We train three regression fusion models respectively for (1)
LightGBM, (2) VGG-net and (3) LightGBM+VGG-net multichan-
nel scores by using the development test set (dev) of each fold (i).
We use the toolkit function train nary llr fusion to train the fusion
models and then apply them to predict the scores on the evaluation
dataset (eval) by using the function apply nary lin fusion:

Model 1 or 2 training on the development test set for fold i:

modeldev
1or2,foldi = train nary llr fusion(probaleft,dev

1or2,foldi,

probaright,dev
1or2,foldi, proba

average,dev
1or2,foldi , probadifference,dev

1or2,foldi )

(1)

Applying model 1 or 2 to predict scores on the evaluation
dataset for fold i:

probaeval
1or2,foldi = apply nary llr fusion(probaleft,eval

1or2,foldi,

probaright,eval
1or2,foldi, proba

average,eval
1or2,foldi , probadifference,eval

1or2,foldi

|modeldev
1or2,foldi)

(2)

Model 3 training on the development test set for fold i:

modeldev
3,foldi = train nary llr fusion(probaleft,dev

1,foldi ,

probaright,dev
1,foldi , probaaverage,dev

1,foldi , probadifference,dev
1,foldi ,

probaleft,dev
2,foldi , proba

right,dev
2,foldi , probaaverage,dev

2,foldi , probadifference,dev
2,foldi )

(3)

Applying model 3 to predict scores on the evaluation dataset for
fold i:

probaeval
3,foldi = apply nary llr fusion(probaleft,eval

1,foldi ,

probaright,eval
1,foldi , probaaverage,eval

1,foldi , probadifference,eval
1,foldi , probaleft,eval

2,foldi ,

probaright,eval
2,foldi , probaaverage,eval

2,foldi , probadifference,eval
2,foldi

|modeldev
3,foldi)

(4)

The final submitted predicting labels are resulted from these
scores across four folds:

predeval
1or2or3 = argmax

∑
i

probaeval
1or2or3,foldi (5)

4. EVALUATION SETUP

We use the development dataset for training and testing both Light-
GBM and VGG-net systems, according to the suggested four-fold
cross-validation setup. Since no parameter tuning is performed for

7https://sites.google.com/site/nikobrummer/focalmulticlass

LightGBM, we use the entire training set in each fold to train the
model. For the VGG-net, a 10% validation set is randomly split
from the training data in each fold to early-stop the training process
with a 10 epochs patience. To evaluate the fused system, we carry
out the late fusion as explained in Section 3.4. The development test
set in each fold is split to 50%, 50%. The former is used to train the
fusion models, and the latter is used to perform the evaluation. The
metric used is classification accuracy, i.e., the number of correctly
classified audio recordings divided by the total amount of record-
ings and we report the average accuracy across the four folds. The
evaluation dataset is used to predict acoustic scenes with our final
proposed systems for the challenge submission.

5. RESULTS AND DISCUSSION

Table 3 shows that the LightGBM+VGG-net fusion system achieves
the best classification accuracy (86.8%). However, this system
doesn’t outperform the LightGBM significantly. After a close in-
spection, we found that the VGG-net performs considerably bad on
the development test set and might already overfit the training set8.
Thus we believe that the VGG-net can’t effectively provide com-
plementary information to the LightGBM+VGG-net system. We
can confirm this assumption by looking into the table 4, because, in
8 out of 15 classes, the best accuracies come from the LightGBM
fusion system.

The prediction labels on the evaluation dataset of the three sys-
tems listed in table 3 are submitted to the challenge.

Table 3: Overall fusion model accuracies.
Fusion models Accuracy (%)
LightGBM 84.0
VGG-net 86.1
LightGBM+VGG-net 86.8

Table 4: Class-wise fusion model accuracies (%).
Classes LightGBM VGG-net LightGBM+VGG-net
Beach 91.7 91.6 91.0
Bus 98.1 97.4 99.4
Cafe/restaurant 73.1 76.9 76.9
Car 96.8 96.2 98.1
City center 90.4 93.6 92.0
Forest path 97.6 94.4 97.6
Grocery store 84.6 87.2 85.3
Home 86.8 77.4 86.2
Library 81.4 70.5 80.1
Metro station 90.4 82.7 90.4
Office 92.9 86.5 91.6
Park 74.4 69.9 73.7
Residential area 82.2 66.7 64.7
Train 84.6 82.7 86.5
Tram 88.5 89.1 90.4

6. CONCLUSION

This report provides a solution for the task 1 of DCASE 2017
challenge. Two audio scene classification systems – LightGBM

8The accuracy of the non-fused VGG-net is not reported in this report.
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and VGG-net are constructed. We output the prediction scores
from the multichannel version of the dataset. We perform a lin-
ear logistic regression method to fuse the LightGBM, VGG-net and
LightGBM+VGG-net scores respectively.

In the future, we plan to tune the VGG-net so that it can provide
useful information for the fusion system.
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