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ABSTRACT 

In this paper, a source separation method based on nonnegative 
matrix factorization (NMF) with online noise learning (ONL) is 
proposed for the robust detection of rare sound events. The pro-
posed method models the rare sound event into combinations of 
acoustic dictionaries, which consist of multiple spectral bases. In 
addition, ONL is adopted during the separation to improve the 
robustness against unseen noises. The spectra of the sound event 
separated by the proposed method act as a feature vector for the 
deep neural network (DNN)-based binary classifier, which de-
termines whether the event has occurred. The evaluation results 
using the DCASE 2017 Task 2 Dataset show that the proposed 
source separation method improved the F-score of the baseline 
DNN classifier by 6.30% while decreasing the error rate by 
14.81% on average. 

Index Terms—Sound event detection, nonnegative 
matrix factorization, online noise learning, unseen noise 

1. INTRODUCTION 

The detection of atypical events, such as an unforeseen accident 
or crash, has been consistently required for its importance re-
garding social safety [1], [2]. Most event detection systems so 
far have been based on visual event detection (VED) technology 
[1]. However, VED might fail to detect atypical events due to 
environmental conditions, such as lighting, obstacles, or a lim-
ited visual angle. On the other hand, sound event detection (SED) 
has been highlighted as complementing the limitations of the 
VED system [2]. Since SED can cover large fields for surveil-
lance regardless of environmental conditions that limit the use of 
VED, it is highly suitable for use in applications regarding secu-
rity or safety [3]. 

To apply SED to real-life surveillance tasks, various types 
of unseen noises should be carefully considered while develop-
ing the SED system. In other words, the SED system should 
reject any kind of sound as noise except the target sound event 
that has been registered in advance. To address this issue, 

nonnegative matrix factorization (NMF)-based source separation 
has been extensively utilized for SED tasks [2, 4–6]. NMF is 
suitable for separating the target sound events from the back-
ground noise if the basis for both the target sounds and the back-
ground noise is given in advance. For this reason, some conven-
tional SED methods successfully detect target sound events in a 
noisy environment by combining both NMF-based source sepa-
ration and the hidden Markov model (HMM)-based binary clas-
sifier [4, 5]. However, these methods might not be suitable for 
real-world applications because they do not consider various 
types of unseen noises, but rely on pre-trained bases for both the 
target sound events and the noise ones. Recently, semi-
supervised NMF-based SED with noise dictionary learning 
achieved satisfactory results in the detection and classification of 
acoustic scenes and events (DCASE) 2016 task 2 [6]. Owing to 
the noise learning by the semi-supervised NMF, detection accu-
racy was substantially improved compared with the conventional 
NMF method at the low signal-to-noise ratio (SNR) of -6 dB. 
However, it was reported in our previous work that the semi-
supervised NMF-based source separation could learn the noise 
dictionary from other sources in the mixture; thus, this substan-
tially degraded the separation performance in the results [7]. For 
this reason, a more sophisticated source separation technique 
with consideration of unseen noises is required for the improved 
performance of SED systems. 

To deal with unseen noises that might interfere with SED 
operation, this paper proposes a source separation method based 
on NMF with online noise learning (ONL) for the detection of 
rare sound events. The proposed method models the target sound 
event into combinations of corresponding dictionaries, which 
consist of multiple spectral bases. The dictionary for the target 
sound event is trained in advance by using K-means clustering 
[8] and unsupervised sparse-NMF (SNMF) [9]. In the source 
separation step, the proposed method first conducts supervised 
SNMF to separate the input signal into two classes: sound event 
and noises. After that, the ideal ratio mask (IRM) is estimated 
from the separated spectra by using minimum mean square error 
(MMSE) filtering [7]. The IRM is then applied to the input spec-
tral power to obtain the spectral power of the sound event and 
noise, which has fewer artifacts than the separated result by 
SNMF. The spectral power of the sound event by the IRM is 
then fed into the deep neural network (DNN)-based binary clas-
sifier [10] as a feature vector. Meanwhile, ONL obtains the spec-
tral basis from recently estimated noise spectral powers, then 
updates the noise dictionary, which is recursively fed into the 
SNMF separation for the subsequent input signal. 
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Following this introduction, Section 2 proposes an SNMF-
based source separation method with ONL. Subsequently, Sec-
tion 3 evaluates the performance of the proposed method and 
compares it with that of a baseline DNN classifier provided by 
DCASE 2017 Task 2 [10]. Finally, Section 4 concludes the pa-
per.  

2. PROPOSED SOURCE SEPARATION FOR SOUND 
EVENT DETECTION 

Figure 1 shows the procedure of the proposed source separation 
method-based SNMF and ONL. As indicated in the figure, the 
proposed method consists of the dictionary training and source 
separation steps. The following subsections describe each stage 
of the proposed method in detail. 

2.1. Dictionary training 

Assume that a training signal that consists of multiple sound clips 
of the target event is prepared. The n-th sample at the t-th frame 
of the training signal, 𝑥𝑥𝑡𝑡Tr(𝑛𝑛), is transformed into the K-point 
mel-spectral power, �𝑋𝑋𝑡𝑡Tr(𝑘𝑘)�2 , by using the short-time Fourier 
transform (STFT) and STFT-to-mel conversion matrix. Next, the 
P series of 𝑋𝑋𝑡𝑡Tr(𝑘𝑘) are grouped into a spectrogram patch, 𝐱𝐱𝑡𝑡Tr, as 

𝐱𝐱𝑡𝑡Tr = ��𝑋𝑋𝑡𝑡−𝑃𝑃+1Tr (𝑘𝑘)�2,⋯ , �𝑋𝑋𝑡𝑡Tr(𝑘𝑘)�2�. (1) 

After that, 𝐱𝐱𝑡𝑡Tr for all t are clustered into the G group by using K-
means clustering with L1 distance [8]. Consequently, the g-th 
group of the clustered spectrogram patch, 𝐱𝐱𝑔𝑔Di, is prepared. Next, 
unsupervised SNMF [9] is conducted on each 𝐱𝐱𝑔𝑔Di to represent the 
g-th group with 𝑅𝑅  spectral bases, 𝐛𝐛𝑔𝑔x . Finally, 𝐛𝐛𝑔𝑔x  of G groups 
concatenate together to form the dictionary corresponding to the 
target sound event as  

𝐁𝐁𝑥𝑥 = �𝐛𝐛𝑥𝑥;1 ⋯𝐛𝐛𝑥𝑥;𝑔𝑔 ⋯𝐛𝐛𝑥𝑥;𝐺𝐺�. (2) 

2.2. SNMF-based source separation 

In the source separation step, the mixture of the target sound 
event and interfering noise signals is given as  

𝑦𝑦𝑡𝑡(𝑛𝑛) = 𝑥𝑥𝑡𝑡(𝑛𝑛) + 𝑑𝑑𝑡𝑡(𝑛𝑛) (3) 

where 𝑥𝑥𝑖𝑖(𝑛𝑛) and 𝑑𝑑𝑖𝑖(𝑛𝑛) are the target sound event and the inter-
fering noise at the t-th frame, respectively. By applying a short-
time Fourier transform (STFT) and the STFT-to-mel conversion 
matrix to (3), 𝑦𝑦𝑡𝑡(𝑛𝑛) can be represented in the frequency domain 
as  

|𝑌𝑌𝑡𝑡(𝑘𝑘)|2 ≅ |𝑋𝑋𝑡𝑡(𝑘𝑘)|2 + |𝐷𝐷𝑡𝑡(𝑘𝑘)|2 for 𝑘𝑘 = 0,⋯ ,𝐾𝐾 − 1 (4) 

where |𝑌𝑌𝑡𝑡(𝑘𝑘)|2 , |𝑋𝑋𝑡𝑡(𝑘𝑘)|2 , and |𝐷𝐷𝑡𝑡(𝑘𝑘)|2  denote the k-th mel-
spectral powers of 𝑦𝑦𝑡𝑡(𝑛𝑛), 𝑥𝑥𝑡𝑡(𝑛𝑛), and 𝑑𝑑𝑡𝑡(𝑛𝑛), respectively. Similar 
to the dictionary training stage, 𝑌𝑌𝑡𝑡(𝑘𝑘) is also represented in the 
spectrogram patch, 𝐘𝐘𝑡𝑡, as 

𝐲𝐲𝑡𝑡 = {|𝑌𝑌𝑡𝑡−𝑃𝑃+1(𝑘𝑘)|2,⋯ , |𝑌𝑌𝑡𝑡(𝑘𝑘)|2}. (5) 

In the NMF framework, 𝐲𝐲𝑡𝑡 = 𝐁𝐁𝑦𝑦𝐀𝐀𝑦𝑦;𝑡𝑡 ,  𝐱𝐱𝑡𝑡 = 𝐁𝐁𝑥𝑥𝐀𝐀𝑥𝑥;𝑡𝑡 , and 𝐝𝐝𝑡𝑡 =
𝐁𝐁𝑑𝑑;𝑡𝑡𝐚𝐚𝑑𝑑;𝑡𝑡 , where 𝐁𝐁𝑦𝑦 , 𝐁𝐁𝑥𝑥 , and 𝐁𝐁𝑑𝑑;𝑡𝑡  are the dictionaries of 𝐲𝐲𝑡𝑡 , 𝐱𝐱𝑡𝑡 , 
and 𝐝𝐝𝑡𝑡, respectively. Moreover, 𝐀𝐀𝑦𝑦;𝑡𝑡, 𝐀𝐀𝑥𝑥;𝑡𝑡, and 𝐀𝐀𝑑𝑑;𝑡𝑡 are the acti-
vation matrices corresponding to 𝐁𝐁𝑦𝑦 , 𝐁𝐁𝑥𝑥 , and 𝐁𝐁𝑑𝑑;𝑡𝑡  at the t-th 
frame, respectively. By assuming that 𝐱𝐱𝑡𝑡 and 𝐝𝐝𝑡𝑡 are fully separa-
ble from 𝐲𝐲𝑡𝑡, 𝐲𝐲𝑡𝑡 can be rewritten as [11]  

𝐲𝐲𝑡𝑡 = 𝐁𝐁𝑦𝑦𝐀𝐀𝑦𝑦;𝑡𝑡 = �𝐁𝐁𝑥𝑥𝐁𝐁𝑑𝑑;𝑡𝑡� �
𝐀𝐀𝑥𝑥;𝑡𝑡
𝐀𝐀𝑑𝑑;𝑡𝑡

� = 𝐁𝐁𝑥𝑥𝐀𝐀𝑥𝑥;𝑡𝑡 + 𝐁𝐁𝑑𝑑;𝑡𝑡𝐀𝐀𝑑𝑑;𝑖𝑖 (6) 

where 𝐁𝐁𝑦𝑦 = �𝐁𝐁𝑥𝑥𝐁𝐁𝑑𝑑;𝑡𝑡� and 𝐀𝐀𝑦𝑦;𝑡𝑡 = [𝐀𝐀𝑥𝑥;𝑡𝑡𝐀𝐀𝑑𝑑;𝑡𝑡]T. Note that T refers 
to the transpose operation. If 𝑅𝑅𝑥𝑥 and 𝑅𝑅𝑑𝑑 (𝑅𝑅𝑦𝑦 = 𝑅𝑅𝑥𝑥 + 𝑅𝑅𝑑𝑑) are the 
ranks of the dictionaries for 𝐱𝐱𝑡𝑡  and 𝐝𝐝𝑡𝑡 , respectively, then the 
dimensions of 𝐁𝐁𝑦𝑦 , 𝐁𝐁𝑥𝑥 , and 𝐁𝐁𝑑𝑑;𝑡𝑡  are 𝐾𝐾 × 𝑅𝑅𝑦𝑦 , 𝐾𝐾 × 𝑅𝑅𝑥𝑥 , and 𝐾𝐾 ×
𝑅𝑅𝑑𝑑 , respectively, while the dimensions of 𝐀𝐀𝑦𝑦;𝑡𝑡 , 𝐀𝐀𝑥𝑥;𝑡𝑡 , and 𝐀𝐀𝑑𝑑;𝑖𝑖 
are 𝑅𝑅𝑦𝑦 × 𝑃𝑃, 𝑅𝑅𝑥𝑥 × 𝑃𝑃, and 𝑅𝑅𝑑𝑑 × 𝑃𝑃, respectively. Note that 𝑅𝑅𝑥𝑥 and 
𝑅𝑅𝑑𝑑 are set to 𝑅𝑅𝑅𝑅 in this paper. 

Since supervised NMF assumes that both 𝐁𝐁𝑥𝑥  and 𝐁𝐁𝑑𝑑;𝑡𝑡  are 
given in advance [7], they focus on finding 𝐀𝐀𝑥𝑥;𝑡𝑡 and 𝐀𝐀𝑑𝑑;𝑡𝑡 from 
𝐲𝐲𝑡𝑡 for the separation of speech and noise. To achieve this goal, a 
multiplicative update rule with a sparsity constraint [9] is itera-
tively performed as  

�
𝐀𝐀𝑥𝑥;𝑡𝑡
𝑗𝑗

𝐀𝐀𝑑𝑑;𝑡𝑡
𝑗𝑗 � = �

𝐀𝐀𝑥𝑥;𝑡𝑡
𝑗𝑗−1

𝐀𝐀𝑑𝑑;𝑡𝑡
𝑗𝑗−1�⨂

�𝐁𝐁𝑥𝑥𝐁𝐁𝑑𝑑;𝑡𝑡�
T 𝐲𝐲𝑖𝑖
�𝐁𝐁𝑥𝑥𝐁𝐁𝑑𝑑;𝑡𝑡��𝐀𝐀𝑥𝑥;𝑡𝑡

𝑗𝑗−1𝐀𝐀𝑑𝑑;𝑡𝑡
𝑗𝑗−1�

T

�𝐁𝐁𝑥𝑥𝐁𝐁𝑑𝑑;𝑡𝑡�
T𝟏𝟏 + 𝛍𝛍

 (7) 

where j is an iteration index and 𝛍𝛍 is an 𝑅𝑅𝑦𝑦 × 1 matrix in which 
all elements are equal to a sparsity weight of the ℓ1 constraint, 
which is set to 5 according to the previous work [9]. In addition, 
⨂ and / indicate element-wise multiplication and division, re-
spectively. Moreover, 1  in (4) is a 𝐾𝐾 × 1 matrix in which all 
elements are equal to unity. Note that all the elements of 

𝐚𝐚𝑦𝑦;𝑖𝑖
𝑗𝑗=0 = �𝐀𝐀𝑥𝑥;𝑡𝑡

𝑗𝑗=0 𝐀𝐀𝑑𝑑;𝑡𝑡
𝑗𝑗=0�

T
 can be initialized as random values be-

tween 0 and 1 [9]. In NMF separation, (4) is repeated until the 
relative reduction of an NMF objective function is less than a 
pre-defined threshold. In this paper, the Kullback–Leibler (KL) 
divergence is employed as an NMF objective function [7, 9]. 

After the source separation, IRM is estimated from 𝐁𝐁𝑥𝑥, 𝐁𝐁𝑑𝑑;𝑡𝑡, 
𝐀𝐀𝑥𝑥;𝑡𝑡, and 𝐀𝐀𝑑𝑑;𝑡𝑡 by using MMSE filtering [7] for both the feature 
enhancement and noise estimation for ONL. To this end, the a 

 
Figure 1: Procedure of the proposed source separation method 
for sound event detection. 
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priori SNR, 𝝃𝝃𝑡𝑡 , is first estimated with a decision-directed ap-
proach as 

𝝃𝝃𝑡𝑡 =
𝛼𝛼𝐱𝐱�𝑡𝑡−1 + (1 − 𝛼𝛼)𝐁𝐁𝑥𝑥𝐀𝐀𝑥𝑥;𝑡𝑡

𝐝𝐝̅𝑡𝑡−1
 (8) 

where 𝛼𝛼 is a smoothing coefficient for the decision-directed 𝜉𝜉𝑖𝑖. 
In addition, 𝐝𝐝̅𝒊𝒊  in (7) is a time-smoothed noise estimate of 
𝐁𝐁𝑑𝑑;𝑡𝑡𝐀𝐀𝑑𝑑;𝑡𝑡, and it is realized as 

𝐝𝐝̅𝑡𝑡 = 𝛾𝛾𝐝𝐝̅𝑡𝑡−1 + 𝛽𝛽𝑡𝑡(1 − 𝛾𝛾)𝐁𝐁𝑑𝑑;𝑡𝑡𝐀𝐀𝑑𝑑;𝑡𝑡 (9) 

where 𝐝𝐝̅0 = �̂�𝐝1, and 𝛾𝛾 controls the stationarity of 𝐝𝐝̅𝒊𝒊. In (9),  𝛽𝛽𝑖𝑖 is 
an adaptive noise flooring factor at the i-th frame, which is de-
rived from the ratio between the normalized activation powers of 
the separated noise and speech as 

𝛽𝛽𝑡𝑡 = 20 log10
𝑅𝑅𝑥𝑥 ∑ 𝐴𝐴𝑑𝑑;𝑡𝑡(𝑟𝑟)𝑅𝑅𝑑𝑑

𝑟𝑟=1

𝑅𝑅𝑑𝑑 ∑ 𝐴𝐴𝑥𝑥;𝑡𝑡(𝑟𝑟)𝑅𝑅𝑥𝑥
𝑟𝑟=1

 (10) 

where 𝐴𝐴𝑥𝑥;𝑡𝑡(𝑟𝑟) and 𝐴𝐴𝑑𝑑;𝑡𝑡(𝑟𝑟) indicate an r-th element of 𝐀𝐀𝑥𝑥;𝑡𝑡  and 
𝐀𝐀𝑑𝑑;𝑡𝑡 from (7), respectively. Next, the IRM is constructed as 

𝐦𝐦𝑡𝑡 =
𝝃𝝃𝑡𝑡

1 + 𝝃𝝃𝑡𝑡
  (11) 

and an enhanced spectrogram patch of the sound event, 𝐱𝐱�𝑡𝑡 , is 
obtained by applying (11) to 𝐲𝐲𝑡𝑡; thus, 𝐱𝐱�𝑡𝑡 = 𝐦𝐦𝑡𝑡 ⊗ 𝐲𝐲𝑡𝑡. Finally, 𝐱𝐱�𝑡𝑡 
is flattened into a KP vector and is then fed into the DNN-based 
binary classifier as an input feature to determine whether the 
event has occurred at the t-th frame. 

2.3. Online noise learning 

To cope with various unseen noise on-the-fly, the proposed ONL 
first estimates a mel-spectral power of the reference noise, �̃�𝐝𝑡𝑡, 
by using the IRM, 𝐦𝐦𝑡𝑡, as described in (11). That is, �̃�𝐝𝑡𝑡 is esti-
mated only when the noise activation is dominant, such as 

�̃�𝐝𝑡𝑡 = �
𝐲𝐲𝑡𝑡⨂(1 −𝐦𝐦𝑡𝑡),   𝑖𝑖𝑖𝑖   𝛽𝛽𝑡𝑡 > 0         
 𝐝𝐝�𝑡𝑡 ,                      𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒           

 (12) 

 In this work, each noise basis is tested for whether it should be 
updated by 

𝐼𝐼𝑡𝑡(𝑟𝑟) = �1,    𝑖𝑖𝑖𝑖  𝐴𝐴𝑑𝑑;�̂�𝑡(𝑟𝑟) > �̅�𝐴𝑡𝑡
0,   𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒           

 (13) 

where A� = (∑ 𝐴𝐴𝑥𝑥;𝑡𝑡(𝑟𝑟))/𝑅𝑅𝑥𝑥
𝑅𝑅𝑥𝑥
𝑟𝑟=1  and 𝐼𝐼(𝑟𝑟) = 1 means that the r-th 

basis should be updated to accommodate the noise that appears 
at the t-th frame. Then, 𝐀𝐀𝑑𝑑;𝑡𝑡 is decomposed depending on (13) 
into 𝐀𝐀𝑑𝑑;𝑡𝑡

𝑟𝑟∈𝑰𝑰𝒖𝒖  and 𝐀𝐀𝑑𝑑;𝑡𝑡
𝑟𝑟∈𝑰𝑰𝒇𝒇 , where 𝑰𝑰𝑢𝑢 = {𝑟𝑟|𝐼𝐼(𝑟𝑟) = 1}  and 𝑰𝑰𝑓𝑓 =

{𝑟𝑟|𝐼𝐼(𝑟𝑟) = 0}. By using �̃�𝐝𝑡𝑡  and 𝐀𝐀𝑑𝑑;𝑡𝑡
𝑟𝑟∈𝑰𝑰𝒖𝒖 , the learnt noise dictionary 

for the (i+1)-th frame, 𝐁𝐁�𝑑𝑑;𝑡𝑡+1
𝑗𝑗 , is iteratively updated by using the 

SNMF that minimizes KL divergence [9] as  

𝐁𝐁�𝑑𝑑;𝑡𝑡+1
𝑗𝑗 = 𝐁𝐁�𝑑𝑑;𝑡𝑡+1

𝑗𝑗−1 ⨂

�̃�𝐝𝑡𝑡
𝐁𝐁�𝑑𝑑;𝑡𝑡+1
𝑗𝑗−1 �𝐀𝐀𝑑𝑑;𝑡𝑡

𝑟𝑟∈𝑰𝑰𝒖𝒖�
T �𝐀𝐀𝑑𝑑;𝑡𝑡

𝑟𝑟∈𝑰𝑰𝒖𝒖�
T

𝟏𝟏�𝐀𝐀𝑑𝑑;𝑡𝑡
𝑟𝑟∈𝑰𝑰𝒖𝒖�

T  
(14) 

where 𝐁𝐁�𝑑𝑑;𝑡𝑡+1
𝑗𝑗=0 = 𝐁𝐁𝑑𝑑;𝑡𝑡

𝑟𝑟∈𝑰𝑰𝒖𝒖  and j is an iteration index. Finally, 𝐁𝐁𝑑𝑑;𝑡𝑡+1 
is obtained by concatenating the converged 𝐁𝐁�𝑑𝑑;𝑡𝑡+1

𝑗𝑗∗  and fixed 

noise dictionary, 𝐁𝐁𝑑𝑑;𝑡𝑡
𝑟𝑟∈𝑰𝑰𝒇𝒇 , as 𝐁𝐁𝑑𝑑;𝑡𝑡+1 = [𝐁𝐁�𝑑𝑑;𝑡𝑡+1

𝑗𝑗∗  𝐁𝐁𝑑𝑑;𝑡𝑡
𝑟𝑟∈𝑰𝑰𝒇𝒇], which will 

be used for the SNMF-based sound event and noise separation 
for the next frame. 

Figure 2 demonstrates the proposed source separation in 
spectrogram comparisons in a linear frequency scale. As indicat-
ed in the figure, each target sound event was successfully sepa-
rated from unseen noises with diverse levels and characteristics. 

3. PERFORMANCE EVALUATION 

To evaluate the performance of the proposed source separation 
method for the SED task, we conducted rare sound event detec-
tion experiments that were provided by the IEEE DCASE 2017 
Challenge: Task 2 [10]. The training dataset was composed of 
the background recordings from the TUT Acoustic Scenes 2016 
development dataset [12] and the three classes of rare sound 
events: baby-cry, glass-break, and gunshot. Both the background 
recordings and event classes are mixed by the mixture genera-
tion procedure with the default recipe provided by DCASE 2017 
Task 2, except the total number of development training sets was 

 
Figure 2: Spectrogram comparisons for noisy mixture and 
estimated target event by the proposed source separation: left 
and right columns show spectrograms of noisy mixtures and 
the separated sound events for baby-cry, glass-crash, and gun-
shot classes, respectively. 

(a) (b)

(c) (d)

(e) (f)

TABLE I 
PARAMETERS SETTING FOR THE PROPOSED SOURCE SEPARATION. 

Parameters Description Value 
K Number of mel-spectral bins 64 
P Time frames consisting a spectrogram patch 12 
R Number of bases consisting a group 6 
G Number of group consisting a dictionary 20 
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increased from 500 to 1500 for the DNN training [10]. Note that 
the proposed source separation was employed for both the train-
ing and the test mixture data for the DNN training. 

The parameters regarding the proposed method were set as 
shown in Table I. In addition, the frame length and shift for the 
STFT were set to 40 and 20 ms, respectively. The STFT-to-mel 
conversion matrix was designed so that 64 mel-spectral bands 
ranged between 80 Hz and 15 kHz. Note that all the input fea-
tures were normalized to compensate for the power mismatch 
between data. The dictionary for the proposed method was 
trained according to Section 2.1 with a training set for each 
event. Note that the initial noise dictionary, 𝐁𝐁𝑑𝑑;𝑡𝑡=0 , was also 
trained in advance with the training dataset from the background 
recordings. 

The DNN-based event classifier was developed as follows. 
The input feature vector consisted of five consecutive frames, 
which were each represented as 64-dimensional log mel-spectral 
power, resulting in 320 visible units being used as an input layer. 
The DNN had three hidden layers with hidden rectified linear 
units of 256, 128, and 64, respectively. The output layer had one 
unit with the sigmoid activation function, corresponding to the 
occurrence probability of the target sound event. The parameters 
of the network were initialized by random values generated from 
uniform distribution. The fine-tuning of the network was per-
formed using binary cross entropy as the loss function through 
error back propagation supervised by the correct labeling of 
frames. The mini-batch size for the stochastic gradient descent 
algorithm was set as 1024. The training was stopped after 200 
epochs. The dropout percentage of 20% was applied for regular-
ization. In the post-processing stage, frame binarization with a 
threshold of 0.5 and median filtering with a window length of 
0.54 s were applied to smooth out the detection results. Note that 
the DNNs corresponding to three different event classes were 
trained separately.  

As evaluation metrics, the F-score and error rate (ER) were 
used on the event-based metric [13]. The F-score and ER were 
measured by the sed_eval toolbox provided by DCASE 2017. 
Table II shows the evaluation results of the DNN-based event 
classifiers employing the proposed source separation. As indi-
cated in the table, the proposed source separation resulted in 
performance improvement over the DNN classifier trained with 
noisy mixtures in terms of both the F-score and ER for different 
even classes. On average, the proposed source separation rela-
tively increased the F-score by 6% and decreased the ER by 
14.81%. 

4. CONCLUSIONS 

In this paper, the source separation method using SNMF with 
ONL is proposed to improve the detection accuracy of rare 
sound event detection in unseen noise conditions. The proposed 

method separates the mel-spectral power of the target sound 
event from the noisy mixture using the supervised NMF and 
updates the noise dictionary on-the-fly by using the separation 
results of subsequent frames. The separated mel-spectral power 
was fed as a feature vector of the DNN-based binary classifier. It 
was shown from the experiment provided by DCASE 2017: 
Task 2 that the proposed method achieved a higher average F-
score and lower average ER than a DNN-based binary classifier 
without employing the source separation method. 
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