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ABSTRACT

This report describes the CP-JKU team’s submissions for Task 1
(Acoustic Scene Classification, ASC) of the DCASE-2017 chal-
lenge, and discusses some observations we made about the data and
the classification setup. Our approach is based on the methodology
that achieved ranks 1 and 2 in the 2016 ASC challenge: a fusion of
i-vector modelling using MFCC features derived from left and right
audio channels, and deep convolutional neural networks (CNNs)
trained on raw spectrograms. The data provided for the 2017 ASC
task presented some new challenges – in particular, audio stimuli
of very short duration. These will be discussed in detail, and our
measures for addressing them will be described. The result of our
experiments is a classification system that achieves classification
accuracies of around 90% on the provided development data, as es-
timated via the prescribed four-fold cross-validation scheme. On
the unseen evaluation data, our best performing method achieved
73.8% and 5th place in the team ranking.

Index Terms— audio scene classification, i-vectors, convolu-
tional neural networks, deep learning, late fusion, data augmenta-
tion

1. INTRODUCTION

This report describes our submissions for Task 1 – Acoustic Scene
Classification (ASC) in the DCASE-2017 Challenge 1. The basic
approach to building our final classifier is based on the methodol-
ogy we developed for the DCASE-2016 Challenge, which took first
and second rank in 2016 and has been described in detail in [1].
The method, which will be briefly recapitulated in the next section,
combines an i-vector modelling approach with a deep convolutional
neural network (CNN) trained on raw spectrograms, and fuses these
via linear logistic regression.

However, this year’s challenge presented a new difficulty: the
provided audio snippets are rather short – 10 seconds rather than
the 30 seconds as used in the 2016 challenge. This is bound to be
problematic for any learning and classification approach, but par-
ticularly so for i-vector-based models, which have been shown, in
the speaker recognition literature, to suffer from a ‘short utterance
problem’ [2]. Consequently, we need to increase the amount of in-
formation that is available in both the training and testing stage; a
corresponding data augmentation strategy will be proposed in Sec-
tion 3 below.

1www.cs.tut.fi/sgn/arg/dcase2017/challenge/

In the end, we submitted the predictions of four classifiers (see
Section 7 below): (1) a calibrated ensemble of i-vector-based clas-
sifiers; (2) a calibrated ensemble of CNNs; (3) a combination of i-
vector and CNN classifiers obtained by averaging; and, as the most
complex model, (4) an ensemble of i-vector and CNN results cali-
brated and fused via linear logistic regression. We estimate the per-
formance of our methods on the openly accessible DCASE-2017
[3] data set, using the prescribed cross-validation scheme. The best
classifier, when evaluated in this way, achieves a classification ac-
curacy of 91.29%.

2. RECAPITULATION: THE DCASE-2016 APPROACH

In DCASE 2016, we proposed a hybrid approach using binaural i-
vectors and CNNs [1]. We adapted the i-vector features for ASC by
1) tuning MFCC features by selecting the best performing window-
ing scheme and cepstral coefficients, 2) extracting i-vectors from
different audio channels (left, right, average and difference) and 3)
combining the i-vector cosine scores of different channels via score
averaging. Our CNN was a VGG-style ConvNet trained on short
segments of spectrograms that made its final decision by combin-
ing the predictions of all the segments from a scene recording. In
the end, linear logistic regression was used to fuse the averaged i-
vector scores with the CNN prediction scores. In classifying the
unseen test data, we combined predictions of the models trained on
each fold in the provided cross validation split.

3. OPTIMISING THE DATA

3.1. Features: MFCCs

We extract the features with the Matlab toolbox Voicebox [4]. The
reasoning behind the specific parametrisation can be found in our
previous work [5]. We suggest to use 23 MFCCs (without 0th

MFCC) extracted by applying a 20 ms observation window with-
out any overlap. 18 MFCC deltas (including the 0th MFCC delta),
and 20 MFCC double deltas (including the 0th MFCC double delta)
are extracted by applying a 60 ms observation window, placed sym-
metrically around a 20 ms frame. Regardless of the observation
window length, we use 30 triangle shaped mel-scaled filters in the
range [0-11 kHz]. Our feature vector has therefore a dimensionality
of 61.
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3.2. Binaural Feature Extraction

Simply averaging both channels into a single monaural signal could
reduce the SNR of important cues that are only well captured in one
of the two channels. Therefore, we suggest to extract MFCCs from
left and right channels, and concatenate the resulting features into
a single feature matrix with twice the length in time: Our feature
extraction scheme with 20 ms hop size yields 500 observations for
the given 10 s audio recordings, and by concatenating the feature
vectors from both channels, we end up with 1000 observations. We
do not stop here, but further increase the size of our feature matrix
by concatenating features from augmented audio recordings.

3.3. Data Augmentation

Since the audio recordings are rather short, which is problematic in
general and a particular problem for i-vector modelling approaches
[2], we suggest to augment the data for training and testing. Consid-
ering various sound sources like engines, voices, bird songs, etc., it
is clear that most probably the limited amount of training data will
not cover the whole range of variation in terms of ‘pitch’. There-
fore, we propose to pitch shift the audio recordings up and down by
25, 50, and 100 cents, respectively. Even though a higher degree of
alteration might make sense for some audio scenes, we do not ap-
ply it in order to avoid the introduction of artifacts due to the pitch
shifting algorithm.

As a consequence, for every audio recording we end up with a
feature matrix that has the same size as the feature matrix extracted
from a 140 s audio recording (10 s * 2 (left/right) * 7 (original +
shifted); 61 features * 7000 observations) instead of just the pro-
vided 10 s audio recordings.

4. THE I-VECTOR CLASSIFIER

Our starting point is the i-Vector modelling scheme already intro-
duced for the DCASE-2016 challenge [1]. In principle, we use the
same i-vector extraction pipeline, and the same post-processing of
the results. A Universal Background Model (UBM) is first trained
on the MFCCs from the training set. This UBM is then used to
learn the i-vector space known as Total Variability Space (TVS).
Using UBM and TVS, i-vectors are extracted from the training and
test set. The i-vectors are normalized to length 1 and a Linear Dis-
criminant Analysis (LDA) is learned using the i-vectors of the train-
ing set. All the i-vectors are then projected into LDA space. As
a next step, a Within-Class Covariance Normalization (WCCN) [6]
is learned from these projected i-vectors. Again, all the i-vectors,
which previously were projected using LDA, are further projected
via WCCN. From each class, all its projected i-vectors are averaged
into one i-vector which is used as the representative of the class
for the scoring step. Projected i-vectors from the test set are then
scored using a cosine scoring and the class-averaged i-vectors. The
class with the maximum score is selected as the label for each test
i-vector.

5. THE DEEP CONVOLUTIONAL NEURAL NETWORK

Our basic network architecture is depicted in Table 1. The structure
is very similar to the one used in our last year’s submission. In par-
ticular, the feature learning part of our model follows a VGG style
network [7] and the classification part of the network is designed
as a global average pooling layer [8] over 15 feature maps (one for

Table 1: Model Specifications. BN: Batch Normalization, ELU: Ex-
ponential Linear Unit, CCE: Categorical Cross Entropy. For train-
ing a constant batch size of 50 samples is used.

Input 1× 500× 137
5× 5 Conv(pad-2, stride-2)-32-BN-ELU
3× 3 Conv(pad-1, stride-1)-32-BN-ELU
2× 2 Max-Pooling + Drop-Out(0.3)

3× 3 Conv(pad-1, stride-1)-64-BN-ELU
3× 3 Conv(pad-1, stride-1)-64-BN-ELU
2× 2 Max-Pooling + Drop-Out(0.3)

3× 3 Conv(pad-1, stride-1)-128-BN-ELU
3× 3 Conv(pad-1, stride-1)-128-BN-ELU
3× 3 Conv(pad-1, stride-1)-128-BN-ELU
3× 3 Conv(pad-1, stride-1)-128-BN-ELU

2× 2 Max-Pooling + Drop-Out(0.3)
3× 3 Conv(pad-0, stride-1)-256-BN-ELU

Drop-Out(0.5)
1× 1 Conv(pad-0, stride-1)-256-BN-ELU

Drop-Out(0.5)
1× 1 Conv(pad-0, stride-1)-15-BN-ELU

Global-Average-Pooling
15-way Soft-Max

each class) followed by a softmax activation. As an activation func-
tion within the network we use Exponential Linear Units (ELUs)
[9]. The main conceptual difference to last year is that we changed
from a sliding window averaging approach for predicting the class
labels to a model that predicts on the whole audio sequence.

We follow two training protocols, which differ mainly in the
way we present the input data to the network. For the first, CNNfull,
we resample the audio to 22050 Hz, and compute a Short Time
Fourier Transform (STFT) using 2048-sample windows at a frame
rate of 50 fps. From this, we compute the magnitude spectrogram
and apply a logarithmic filterbank with 24 bands per octave on the
frequency band between 20 Hz and 8kHz. This yields 500-frame
spectrograms with 137 frequency bins per data point.

For the second, CNNexcerpt, we show the network only randomly
selected 2-second excerpts of the full spectrograms during training,
while presenting the whole spectrogram during testing. Further, we
add spectrograms computed using half and double the window size
as channels to the input, resulting in a 3 × 200 × 206 dimensional
input space (3×500×206 when testing). We also apply a different
dropout technique in this configuration. Instead of regular dropout,
we drop out complete feature maps, however with lower probabili-
ties (0.1 instead of 0.3, and 0.3 instead of 0.5 respectively). While
the validation performances achieved by both training protocols are
comparable, they seem to complement each other well in the classi-
fier fusion. This indicates that they focus on different aspects of the
input.

We run each experiment (train run on one fold) multiple times
(> 20), and only keep the top five models with respect to validation
set accuracy. When changing parts of our system we then consider
the mean and standard deviation over these runs to get a more reli-
able estimate of the impact of our modifications.

We use the ADAM update rule [10] with an initial learning rate
of 0.002 and a mini-batch size of 50 samples. If accuracy has not
improved during the last 20 epochs, we halve the learn rate and



Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

continue training from the best parameter configuration (in terms
of validation accuracy) found so far. This refinement procedure is
repeated up to 15 times.

We observed that the individual top-5 models (which show sim-
ilar overall accuracy) differ when looking at the individual class per-
formances. To take this into account, we average the predicted class
probabilities over the top-5 models for each fold to get one estimate
per fold.

6. SCORE CALIBRATION AND LATE FUSION

As outlined above, we train three i-vector-based models and five
CNN-based models (in each training protocol) for each fold. This
results in 13 models per fold. We then follow a two-stage fusion and
calibration procedure to obtain the test results: first, we calibrate
and fuse the models fold-wise. Then, we average the predictions
of the fold-wise fused models. Figure 6 shows an overview of our
approach.

We calibrate the prediction scores and fuse the predictions of
the individual models using linear logistic regression. In particular,
for each fusion, we train classifier weights W and class biases b
using the validation set2, and compute the fused prediction y =
σ (XW + b), where σ is the softmax function, and X are the class
probabilities given by each classifier. As shown in Fig. 6, we use
this approach for submissions IVECcalib, CNNcalib, and Allcalib; for
Allavg, we use plain averaging instead, to see whether training the
calibration and fusion on the validation set leads to over-fitting.

7. RESULTS

7.1. Submissions

We provide 4 different submissions based on the methods described
in the previous sections:

1. IVECcalib: Late calibrated fusion of all Binaural I-vectors

2. CNNcalib: Late calibrated fusion of all CNN models

3. Allavg: Late averaging fusion of all CNN models and all Bin-
aural I-vectors

4. Allcalib: Late calibrated fusion of all CNN models and all
Binaural I-vectors

As a final prediction for the unseen test set we submit the aver-
aged predictions over all four folds.

7.2. Performance on the validation set

In Table 2, all accuracies on ASC are provided. We show the perfor-
mance of the different methods on the four validation folds as well
as the average accuracy over all folds.

Additionally, in Table 3, the class-wise accuracies of the differ-
ent methods are provided. The baseline method provided with the
dataset is given as Base.

When looking at the individual models, we see that CNNs out-
perform the baseline as well as the i-vector system. This is contrary
to last year’s submission, which suggests that CNNs tend to work
better on shorter utterances (10 seconds compared to 30 seconds).
Our overall best accuracy of 91.29% is achieved when fusing all

2Ideally, we would use a dedicated calibration set to reduce the risk of
over-fitting.

Table 2: Audio scene classification accuracy on the provided
DCASE-2017 validation set with provided cross-validation splits.

(%) fold1 fold2 fold3 fold4 avg
IVECcalib 84.27 85.17 80.73 87.61 84.45
Allavg 86.58 87.98 88.58 87.68 87.70
CNNcalib 88.72 90.03 89.09 88.29 89.03
Allcalib 91.62 92.24 89.68 91.62 91.29

Table 3: Class-wise accuracies of different methods on the provided
development data. The results are averaged over all four folds.

(%) Base IVECcalib Allavg CNNcalib Allcalib

Beach 75.3 85.9 88.8 90.4 91.0
Bus 71.8 94.6 98.1 98.1 98.4
Cafe/Rest. 57.7 79.5 79.5 87.2 89.7
Car 97.1 96.2 97.4 97.1 97.4
City center 90.7 87.8 86.5 85.3 88.1
Forest path 79.5 93.6 95.5 95.2 96.5
Grocery store 58.7 91.0 96.5 94.6 97.4
Home 68.6 77.7 82.4 85.5 86.8
Library 57.1 75.0 88.8 90.1 92.3
Metro station 91.7 76.3 89.1 86.5 91.0
Office 99.7 92.0 95.5 95.5 96.5
Park 70.2 84.6 65.1 70.2 80.5
Resident. area 64.1 65.7 74.4 73.1 74.4
Train 58.0 79.8 87.5 93.9 93.9
Tram 81.7 87.2 91.4 93.0 95.5
Overall 74.8 84.5 87.7 89.0 91.3

models using calibration (model Allcalib). I-vectors show a simi-
lar cross-validation performance as in DCASE-2016, but data aug-
mentation as described in Section 3 was required to achieve this.
In contrast, CNNs seem to work significantly better than last year
without any data augmentation. As a final observation we highlight
the performance gain when fusing both CNNs and i-vectors into one
system. This is surprising as CNNs outperform i-vectors on almost
all of the classes (except for city center and park).

7.3. Performance on the evaluation set

In Table 4, the results of our methods on the unseen evaluation
set are listed, along with the baseline provided by the organisers.
All methods provide higher accuracies than the baseline, and the
method where we fuse our two rather different approaches (Allcalib)
performs best, yielding 73.8% accuracy and 5th place in the team
ranking. Contrary to the results on the validation set, our i-vectors
perform better than our CNN by almost 4 ppt. However, the linear
logistic regression-based fusion of both methods results in a syn-
ergy. Simply averaging leads to a worse performance compared to
the i-vectors alone.

Considering the results of our CNNs, it becomes clear that the
greatest strength of deep learning – the ability to model extremely
complex relationships between input and target – holds an om-
nipresent risk of non-obvious overfitting: it is hard to tell where
generalisation ends and overfitting begins when it is unclear in what
aspects the validation and evaluation data sets will differ.
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Figure 1: Overview of fusion schemes used for our submissions.

Table 4: Accuracies of the different methods on the evaluation data
set, compared to the provided baseline.

(%) Base IVECcalib Allavg CNNcalib Allcalib

Evaluation 61.0 68.7 66.8 64.8 73.8

8. CONCLUSION

This short report has described how we extended and optimized our
DCASE-2016 ASC approach in order to address the challenges of
the 2017 DCASE ASC task – in particular, the short duration of
provided audio snippets. The results on the provided DCASE-2017
data again show that the fusion approach seems superior to simpler
classification models.

Generally, classification accuracies around 90% in a hard 15-
class discrimination task such as this, where humans, under simi-
lar conditions, achieve recognition rates around 50% (at least ac-
cording to a test we ran with students at our university, using the
DCASE-2016 listening test infrastructure3) seem surprisingly high.
The lower results on the new evaluation data confirm our initial con-
cerns regarding overfitting.
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