
Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

DCASE 2017 SUBMISSION: MULTIPLE INSTANCE LEARNING
FOR SOUND EVENT DETECTION

Justin Salamon1,2, Brian McFee1,3, Peter Li1, Juan Pablo Bello1,

1 Music and Audio Research Laboratory
2 Center for Urban Science and Progress

3 Center for Data Science
New York University, New York, USA

{justin.salamon, brian.mcfee, phl232, jpbello}@nyu.edu

ABSTRACT

This extended abstract describes the design and implementation
of a multiple instance learning model for sound event detection.
The submitted systems use a convolutional-recurrent neural net-
work (CRNN) architecture to learn strong (temporally localized)
predictors from weakly labeled data using soft-max aggregation.
Four variants of the proposed methods were submitted to DCASE
2017 [1], Task 4.

Index Terms— Deep learning, multiple instance learning, en-
vironmental sound

1. INTRODUCTION

Our approach to the weakly supervised sound event detection
for smart cars (hereafter referred to as Task4) challenge is based
on multiple instance learning [2]. Specifically, we developed
convolutional-recurrent networks to predict strong (i.e., time-
varying) labels, which are aggregated to form weak (summary) pre-
dictions. The models are trained from weakly labeled data, and the
learning signal is propagated through the temporal aggregation op-
erator to inform the strong predictions.

Our model implementation is open source and publicly avail-
able to facilitate reproducibility.1

2. MODEL DESIGN

In this section, we describe the common architectural components
of the submitted models.

2.1. Pre-processing

Each audio file was pre-processed with librosa 0.5 [3] and
pumpp 0.3.1 [4]. Audio was converted to 44100 Hz mono, and con-
verted to a log-power Mel spectrogram representation with a hop-
length of 1024 samples, FFT window of 2048 samples, 128 Mel
bins spanning 0 to 22050 Hz. For model development purposes,
annotations were sampled at a matching frame-rate with pumpp.

2.2. CRNN architectures

The models under consideration all have a convolutional-recurrent
neural network (CRNN) architecture, and use common processing

1https://github.com/justinsalamon/milsed

blocks inspired by the audio component of the Look-Listen-Learn
model [5], and Gated Recurrent Unit (GRU) networks [6].

Each model consists of a sequence of 4 convolutional k-blocks,
defined as:

• k times:

• ni conv2D (3× 3), ReLU activation, padded
• batch normalization [7]

• max2D pooling (2× 2) with stride of 2

where ni denotes the number of filters in block i, and k denotes the
number of convolutional layers in the block. In all models under
consideration we set ni = 23+i = (16, 32, 64, 128).

Each k-block acts as a local feature extractor and dimension-
ality reduction module: each block reduces both the time and fre-
quency resolution by a factor of 2. Because the input representation
has d = 128 = 27, after 4 k-blocks, the frequency resolution is re-
duced to 23 = 8 bands (and n4 feature channels per band). A final
conv2D layer of D filters with size (1, 8) collapses the frequency
dimension to produce a time-series of D-dimensional feature en-
codings.

The output of the final convolutional layer is then used as in-
put to one or more bi-directional GRU layers. Here, we fixed the
hidden-state dimension of each GRU to 128 (in each direction), re-
sulting in a time-series of (128+128)-dimensional feature encodings
z(t).

Finally, the output of the (last) GRU layer is mapped through a
sigmoid layer to produce a time-series of class predictions

ŷ(t) ∈ [0, 1]C

corresponding to the C target labels for each frame t. This time-
series is aggregated (see below) to produce a single class likelihood
vector Ŷ for the entire recording. The bias vector on the output layer
is `2-regularized to limit sensitivity to skewed class distributions.

All models are trained using weak (track-level) annotations to
optimize binary cross-entropy between Y and Ŷ , while the time-
series predictions ŷ(t) can be used at test time to temporally localize
event detections.

2.3. Soft-max aggregation

In multiple instance learning, training data are labeled as bags of
examples, where a bag is positive if any of its constituent exam-
ples are positive, and negative if none of its examples are positive.



Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

Consequently, it is common to aggregate element-wise predictions
(typically scores or likelihoods) by taking the maximum over all
elements in the bag:

Ŷ = max
t

ŷ(t),

where Ŷ is the bag-level prediction, and ŷ(t) operate on the level of
individual examples indexed by t. In the context of audio, a bag is
typically a recording, and examples correspond to frames or short
segments within the recording. In multi-label applications, the max
is taken element-wise, independently for each output label.

While this design makes intuitive sense, it can be brittle in prac-
tice. During training, the max operator generally depends on a sin-
gle element (frame), which in the context of deep learning methods,
implies that the learning signal propagates only through that maxi-
mally activating frame, even if other frames are also highly activat-
ing for the target concept.

To circumvent this issue, we replace the max operator with the
soft max average of predictions:

Ỹ (X) =
∑
t

ŷ(t)

(
exp (ŷ(t))∑
u exp (ŷ(u))

)
.

This behaves similarly to the max operator, but allows gradients to
flow through all frames in proportion to how highly they activate for
each target concept.

In preliminary experiments, we compared max, soft-max aver-
age, and unweighted average pooling on the Task 4 validation data,
and found soft-max averaging to outperform the others in all cases.

At test time, we can predict with either Ŷ (weak-from-strong
prediction) or Ỹ (weak-from-model prediction).

2.4. Ensembling

Given M > 1 pre-trained models, we also experimented with en-
semble methods. The ensemble prediction ŷ∗ is constructed by tak-
ing the geometric mean of predicted class likelihood vectors from
each element of the ensemble:

ŷ∗(t) := exp

(
1

M

M∑
i=1

log ŷi(t)

)

where ŷi is the prediction from the ith model.
For weak-from-strong prediction, the ensemble prediction Ŷ ∗

is taken as the max over the ensembled strong predictions:

Ŷ ∗ := max
t

ŷ∗(t)

For weak-from-model prediction, the ensemble prediction Ỹ ∗

is the goemetric mean of the individual weak predictions Ỹi:

Ỹ ∗ := exp

(
1

M

M∑
i=1

log Ỹi

)
.

3. IMPLEMENTATION

All of our models were developed in Keras 2.0 [8] and
TensorFlow 1.1 [9]. Training was facilitated with Pescador
1.0 [10].

3.1. Data augmentation

To improve the robustness of the models, we include training with
data augmentation using the muda library 0.1.4 [11, 12]. Specif-
ically, we experimented with pitch transposition (up to ±5 semi-
tones) and dynamic range compression (DRC) augmentation using
preset modes radio, film standard, music standard, speech.

3.2. Training setup

The weakly labeled training set was randomly split into 75%/25%
training and validation. Models were trained using the Adam opti-
mizer [13] with mini-batches of 32 examples per batch. Each train-
ing epoch consists of 512 batches, and validation was performed by
randomly sampling 1024 batches. The learning rate was decreased
automatically if the validation score has not decreased in 10 epochs,
and training was terminated early if it did not decrease in 30 epochs.
Training was limited to 150 epochs total.

3.3. Validation and model selection

We experimented with a variety of architectures, varying the block
size k ∈ {2, 3, 5} and the number of GRU layers {1, 2, 3}, as well
as the aggregation method (max, mean, or soft-max), and form of
data augmentation (pitch and/or DRC). Models were evaluated on
the validation set for weak F1-macro and -micro average across
categories, and on the small, strongly labeled test set for strong pre-
dictions (F1-scores and error rate).

We also experimented with including CBHG layers [14] be-
tween the convolutional and recurrent layers, but this was not found
to provide significant improvement over the simpler CRNN models.

For generating model ensembles, we evaluated all 120 non-
trivial subsets of a collection of 7 candidate configurations.

4. SUBMITTED SYSTEMS

In our final submissions, we included four configurations, listed in
Table 2. Two submitted models (systems 1 and 2) are individual
predictors, whose architectures are described in Table 1. The re-
maining two models (3 and 4) are ensembles, whose components
are also described in Table 1.

The final selected configurations were chosen to achieve high
performance (F1-score and error rate), and test the influence of spe-
cific design choices:

• 1 vs. 2: soft-max or mean aggregation?
• 1 vs. 3: ensemble or single-model?
• 3 vs. 4: weak-from-strong or weak-from-model?

4.1. Results

The performance of the systems on the development test-set for
weak (subtask A) and strong (subtask B) prediction are listed in Ta-
ble 3. Weak labeling metrics are computed with scikit-learn
[15] using micro-averaging (instance based). Strong labeling met-
rics are computed with sed eval [16] using segment-based eval-
uation with a segment duration of 1 second.



Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

Table 1: Individual model configurations. Block size corresponds to the number of convolutional layers per processing block.

Model Block size # GRU # Parameters Aggregation Augmentation

A k = 2 1 858K soft-max pitch
B k = 2 3 1.45M soft-max pitch
C k = 2 3 1.45M mean pitch
D k = 3 3 1.65M soft-max DRC + pitch

Table 2: Systems submitted for Task 4. See Table 1 for details of
each model.

Name Model(s) Weak prediction rule

System 1 B from strong
System 2 C from strong
System 3 A,B,D from strong
System 4 A,B,D from model

5. ACKNOWLEDGMENT

We would like to thank the administrators of the DCASE2017 chal-
lenge for all of their hard work in running the system, and dutifully
answering all of our annoyingly detailed questions.

6. REFERENCES

[1] http://www.cs.tut.fi/sgn/arg/dcase2017/.

[2] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving
the multiple instance problem with axis-parallel rectangles,”
Artificial intelligence, vol. 89, no. 1, pp. 31–71, 1997.

[3] B. McFee, M. McVicar, O. Nieto, S. Balke, C. Thome,
D. Liang, E. Battenberg, J. Moore, R. Bittner, R. Yamamoto,
D. Ellis, F.-R. Stoter, D. Repetto, S. Waloschek, C. Carr,
S. Kranzler, K. Choi, P. Viktorin, J. F. Santos, A. Holovaty,
W. Pimenta, and H. Lee, “librosa 0.5.0,” Feb. 2017. [Online].
Available: https://doi.org/10.5281/zenodo.293021

[4] B. McFee, “pumpp: a practically universal music pre-
processor,” July 2017. [Online]. Available: https://doi.org/10.
5281/zenodo.839941

[5] R. Arandjelovic and A. Zisserman, “Look, listen and learn,”
CoRR, vol. abs/1705.08168, 2017. [Online]. Available:
http://arxiv.org/abs/1705.08168

[6] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase
representations using rnn encoder-decoder for statistical ma-
chine translation,” arXiv preprint arXiv:1406.1078, 2014.

[7] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
in International Conference on Machine Learning, 2015, pp.
448–456.

[8] F. Chollet et al., “Keras,” 2015.

[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.,
“Tensorflow: Large-scale machine learning on heterogeneous
distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[10] B. McFee, C. Jacoby, and E. Humphrey, “pescador,” Mar.
2017. [Online]. Available: https://doi.org/10.5281/zenodo.
400700

[11] B. McFee and M. Cartwright, “bmcfee/muda: 0.1.4,” July
2017. [Online]. Available: https://doi.org/10.5281/zenodo.
830018

[12] B. McFee, E. Humphrey, and J. Bello, “A software framework
for musical data augmentation,” in 16th International Soci-
ety for Music Information Retrieval Conference, ser. ISMIR,
2015.

[13] D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[14] J. Lee, K. Cho, and T. Hofmann, “Fully character-level neu-
ral machine translation without explicit segmentation,” arXiv
preprint arXiv:1610.03017, 2016.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-
learn: Machine learning in python,” J. Mach. Learn.
Res., vol. 12, pp. 2825–2830, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1953048.2078195

[16] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics
for polyphonic sound event detection,” Applied Sciences,
vol. 6, no. 6, p. 162, 2016. [Online]. Available: http:
//www.mdpi.com/2076-3417/6/6/162



Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

Table 3: Validation- and test-set results for all four submitted model configurations, under both weak (W) and strong (S) evaluation conditions.
F1 scores are micro-averaged. ER is the error-rate metric for strong prediction: lower scores are better.

System (W) F1 (W) Precision (W) Recall (S) F1 (S) Precision (S) Recall ER

1 0.459 0.447 0.470 0.404 0.423 0.387 0.843
2 0.440 0.399 0.490 0.393 0.405 0.383 0.861
3 0.455 0.537 0.394 0.410 0.533 0.334 0.761
4 0.380 0.630 0.272 0.410 0.533 0.334 0.761


