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ABSTRACT
In this paper, we propose an improved Deep Neural Network-
Hidden Markov Model (DNN-HMM) hybrid system for rare sound
event detection. The proposed system leverages transfer learning
technology in the neural network training stage. Experiment results
indicate that transfer learning is more efficient when the training
samples are insufficient. We use the Multi-Layer Perception (MLP)
system and standard DNN-HMM system as the baseline. The
performance was evaluated on the DCASE2017 task 2 development
dataset show that our proposed system outperforms the MLP and
DNN-HMM baselines, and finally achieves an average error rate
(ER) of 0.38 and 78.3% F1-score on the event-based evaluation.
The average error rate of proposed system is 15% and 8% absolutely
lower than the MLP and DNN-HMM systems, respectively.

Index Terms— Rare sound event detection, transfer learning,
deep neural network, hidden Markov model

1. INTRODUCTION

The research of sound event detection (SED), also named as
acoustic event detection (AED), became popular in this decade.
The applications of SED technology are needed on a number
of occasions, including acoustic surveillance, environmental
context detection, automatic audio indexing/retrieving, smart
house, diseases detection, urban planning, acoustic ecology,
organisation/navigation of sound archives, scene understanding,
audio source segment [1–4], and so on.

There are two main categories in the SED research. One
is the detection of sound events in a particular scene, called
overlapping sound events detection, which also called polyphonic
event detection (PED) [5] [6]. This task requires events to be related
to the scene. However, there is no restriction on the number of event
classes and when the events occur. Its purpose is to make research
tasks closer to reality. The other category is the detection of specific
sound events in different scene environments, called monophonic
event detection, such as the rare SED task in DCASE2017 challenge
[7]. This task is mainly used to monitor important events, and it can
be used to find the interesting audio events on the Internet.

The research methods of SED includes designing the sound
event features and constructing the acoustic models. The designed
sound features are usually high-level features according to the
requirements of the task. Valenzise et al. proposed a fusion of
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traditional features to detect screams and guns in different event-
to-background ratio (EBR) environments [8]. These methods are
followed by a good classifier as usual. The support vector machine
(SVM) is one of the most popular choices for its good performance
and ease of use [9]. Acoustic model building is to find the best way
to describe the audio events based on statistical significance. The
training is supervised, and the inputs are always the basic features.
Mesaros built a SED systems based on HMM for SED in everyday
environment [10]. Zhuang et al. used artificial neural network
(ANN-HMM) to model the sound events [11]. DNN is one of
the most popular topics in recent years. It has not only achieved
a high performance with simple structures, more importantly, it
can learn knowledge from the data. Kong et al. used DNN to
combine feature extraction and model construction [12]. Espi et
al. used the auto-encoder to complete the unsupervised feature
extraction [13]. The McLoughlin team used DNN as the classifier
with time-frequency spectral image feature (SIF) [14]. In addition,
Convolution neural network (CNN) and Long Short-Term Memory
(LSTM) were introduced into SED as well [15–17]. However, most
of these methods need a lot of data to train a robust model.

In this paper, we proposed a new DNN-HMM hybrid system for
rare SED task. The proposed system leverages the transfer learning
technology in the neural network training stage. We used DNN-
HMM as the main structure because the DNN-HMM system has
good stability and adaptability in Auto-Speech Recognition (ASR),
which is similar to SED. For rare SED, the training sample is not
sufficient. So we make an attempt to utilize transfer learning to
overcome the data sparse problem.

The rest of paper is organized as follows: Section 2 presents
the concept and strategy of transfer learning technology. Section
3 describes the proposed method in detail. Section 4 introduces
the experiments and analyzes the results. Finally, we conclude this
paper and discuss future work in Section 5.

2. TRANSFER LEARNING

DNN is a data-driven multi-layer self-learning network structure.
The classification and self-learning are implemented by forward and
backward propagation of the network. Specifically to the nodes on
each layer, the propagations are shown in Eq. (1):

yi = f(

n∑
j=1

Wijxj), (1a)

Wl = Wl − α∆Wl, (1b)
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Figure 1: Transfer Learning for SED

where, xj is the value of the jth nodes, yi is the value of the ith
nodes at the next layer, Wij is the weight connecting those two
nodes above, f is the activation function, α is the learning rate.

DNN will eventually converge to a local optimal value after
multiple iterations and is prone to be over-fitting when the training
data is insufficient. A small amount of training data may be
distinguished by insignificant differences easily, and that leads to
ignore the main features. The accuracy of the training dataset will
be higher, but that of the evaluation dataset is not good.

One solution is to apply Restricted Boltzmann Machine (RBM)
to pre-training a Deep Belief Network (DBN). RBM is a bi-
directional network, by minimizing the the total energy, it can get
better parameters to describe the map between input and output
comprehensively. Through fine-tuning, a better DNN can be
obtained [18].

Another solution is pre-train a neural network with large out-
domain data and use transfer learning to adapt the network to in-
domain data. The transfer learning can be used to solve three
problems: handle new tasks with existing models from other
domains. Update the old models using a little bit of new data. Build
a new models borrowing data from related domains.

Transfer learning has been proved to be beneficial in many
examples in knowledge engineering [19]. For rare SED, we used
the strategy of transfer learning as illustrated in Fig. 1.

Like human speech, the different sounds have a lot of common
properties, such as tone and beats. Therefore, we can use the sound
of other tasks to train a common Base Hidden Layers (BHL). The
amount of training data could be increased linearly. Meanwhile,
a certain degree of complementarity between events can make the
extraction better. Based on BHL, we learn each task separately
again to make the model fit better.

3. PROPOSED METHOD

3.1. Data preparation

The DCASE2017 Challenge provided a TUT Rare Sound Events
2017 dataset, a set of isolated sound events for detecting, including
babycry, glassbreak and gunshot, and everyday acoustic scenes to
serve as background. Source code for creating mixtures at different
EBR was provided as well. and we used the provided code to

Table 1: Feature Configuration
fbank MFCC

use energy false true
frame length 40 ms
frame shift 25 ms

num mel bins 40
num ceps - 20
low freq 300 Hz
high freq 22050 Hz

Table 2: EAD Configuration
energy base (E0) 3
mean scale (S) 0.625

frames context (N ) 5
proportion threshold 0.6

generate a bigger training dataset. In order to simulate the possible
different EBR environments, we set the EBR to 3 cases, -6dB, 0dB
and 6dB. The whole length of background is 9.34h. In each EBR
case, we generated 3000 mixtures wav files per target. In addition,
we used background noises directly as the negative samples. The
training dataset has a total of 27844 samples. After that, we also
need to do some pre-processing for these synthesised audio: 1)
Clipping. Find the location of the event, cut off other parts. 2)
Formatting. Convert the audio to 16-bit 44.1kHz mono wav. 3)
Scaling. Scale the amplitude of the audio linearly to [-255,255].
We only apply step 2 for step 3 above for background noises.

3.2. Feature extraction

Our system extracted two features, log mel-band energy features
(fbank) and Mel Frequency Cepstrum Coefficient (MFCC). Fbank
can keep more original information. We used it to train the
DNN. MFCC was extracted based on fbank for further Discrete
Cosine Transform (DCT). We used MFCC to construct the Gaussian
Mixture Model (GMM) with diagonal variances. It was used for the
state level label alignment later. The configuration of the feature is
shown in the Table. 1.

After the feature extraction, we did Sound Event Activity
Detection (SEAD) using the energy feature. We considered the
lowest part of an audio as a useless part, which belongs to neither
the event nor scene. It is simple and effective for AED, however,
this part may affect the accuracy of model training sometimes. We
removed it in the training process. The decision score is calculated
as Eq. (2).

Eθ = E0 +
S

T

T−1∑
t=0

Et, (2a)

At =
1

2N + 1

t+N∑
t−N

(Et > Eθ), (2b)

We set an energy threshold Eθ . It is calculated by an energy
base E0 and a mean scale S. Et is the log energy of the t-th
frame. The activity score of the t-th frame At is determined by N
frames context together. We compared the activity score At with
the proportion threshold to decide the activity of the t-th frame.
The configuration of the SEAD is shown in Table. 2. There is an
example of the effect of the SEAD illustrated in Fig. 2. The upper
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Figure 2: Effect example of EAD

figure shows the spectrum of an original audio, the lower figure
shows the corresponding SEAD effect. We can use it to eliminate
the low energy pause in the event to improve the accuracy of frame-
level tags.

We did the Cepstral Mean Normalization (CMN) for each
training data after SEAD to eliminate multiplicative noises. The
feature vectors were calculated using Kaldi toolkit [20].

3.3. Acoustic model

Each event corresponds to an acoustic model. And we generally
describe the acoustic models from two perspectives, the temporal
structure and the spectral structure. Here, we chose DNN-HMM
structure to simulate the acoustic models.

3.3.1. Temporal structure

Temporal structure mainly refers to the transition of the event with
time. The process of transition in each category are different. These
process can be roughly divided into several cases. Depending on
whether the event is periodic, it can be divided into periodic events
and aperiodic events. According to the symmetry of events, it can
be divided into symmetry events and asymmetric events. The state
number of each event is not the same, which is related to the average
length of the event in one period.

Firstly, there are two special states. The first state S0 is the
event-start state (ESS), and the last state is the event-end state
(EES), which play the role of connecting different events. The ESS
can only transfer to state S1, and the EES can not transfer.

Except for the ESS and EES, we designed 4 different state
transfer topology for corresponding situations. As illustrated in
Fig. 3, babycry event belongs to symmetry periodic category.
Because of symmetry, the back-end states are similar to the front
states. That will cause confusion during training. So we set the rule
that for symmetry periodic category, adjacent states can transfer
between each other, and the start state S1 can transfer directly to
the EES. The glassbreak and gunshot events belong to asymmetric
periodic category. Different from symmetry events, the states in
different are different too. So we set the second rule that for
asymmetric periodic category, transfer between stats can only be
done from front to back, except for the last state S4. Only S4
can transfer back to the start state S1 to keep the periodicity. The
regularity of scenes is not obvious, thus, we used a simple 3 states
structure. The silence model is used to absorb the stationary random
noise and impulse noise. It also belongs to period structure.

Babycry

S0 S1 S2 S3 S6S4 S5

Glassbreak & Gunshot

S0 S1 S2 S3 S5S4

Silence

S0 S1 S2 S3 S4

Scenes

S0 S1 S2

Figure 3: HMM structure

The HMMs were trained using HTK [21]. The state emission
probability was generated by GMMs. Therefore, we chose the
MFCC features as the input. As a by-product of training HMM,
we could get the state-level labels of events. GMM-HMM training
was semi-supervised. We only provided the content of the audio,
without specifying the location where the event occurred. The
cluster of the state was completely driven by data. This can avoid
manmade annotated errors. But it will also lead to the problem that
the location of label is not accurate, and sometimes marking wrong.
Thus, we should use the existing event-level label to do a calibration
alignment.

3.3.2. Spectral structure

Spectral structure describes the distribution of energy in different
frequency bands. It is just like a classifier. We used the 5 frame-
context fbank features as the input, and obtained the probability of
each state:

P (st = i|xt) =
exp(ai,t)∑K
i=0 exp(ai,t)

(3)

where the xt is the feature vector of the t-th frame, and the st is the
state of the t-th frame, and ai,t is the output of activation function
of t-th frame to the i-th state. We used a DNN model to simulate
the spectral structure with a softmax layer at the end. In the training
stage, we used state-level labels generated above as the output. The
DNN model has 2 hidden layers. The dimension of input is 200,
each hidden layer has 400 nodes.

To avoid the over-fitting, transfer learning strategy was used.
We used all of the training data to train the BHL regarding the whole
states of three events as the output, which has 32 dimensions. DBN
was trained for pre-training preparation. The BHL was adapted on
the base of DBN. We used the sigmoid as the activation function
and cross-entropy as the cost function. Considering the problem of
imbalance between positive and negative samples, we used different
weights for each type of data. The weights update formula are
shown below:

Wl = Wl − P tweightα∆Wl, (4)

where the P tweight is the weight of the t-th frame. Then, we used
the data of each task to do the adaptation on the BHL with a dropout
rate 0.2. The configuration in details is listed in Table. 3.
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Table 3: DNN Configuration
DBN DNN

learning rate 0.4/0.01 0.001
nnet depth 2

hidden dimension 400

Table 4: Results compared to baselines
Class-based average

ER F1[%]

MLP(Baseline) 0.53 72.7

DNN-HMM
(standard) 0.46 72.2

DNN-HMM+BHL
(Our method) 0.39 77.6

4. EXPERIMENT

We evaluated our proposed method on the DCASE2017 task2
development dataset. Each event has 500 test audio, these audio
are also synthesized by the same way as the training dataset. The
EBR of the synthetic audio could be -6dB, 0dB or 6dB, and only
half of them have a real target event. The length of each test audio
last 30s. The evaluation metric for the experiment is event-based
error rate calculated using onset-only condition with a collar of 500
ms. Additionally, event-based F-score with a 500 ms onset-only
collar will be calculated [22].

4.1. Comparing with baseline

We compared our proposed system with two baseline systems. One
is a multi-layer perception architecture system using fbank features.
The neural network contained two dense layers of 50 hidden units
per layer and 20% dropout was trained for 200 epochs for each
class. The detection was decided by a median filter based on a
single output neuron of sigmoid type [23]. The other is a standard
DNN-HMM without transfer learning. The results are shown in
Table. 4. Our method achieved the best results among three systems.
The ER metrics of DNN-HMM system are better than single MLP
system, but the F1 score of standard DNN-HMM are lower than
MLP baseline. The transfer learning can help the DNN-HMM
system more powerful.

A detailed description of results of each events is shown in
Table. 5. MLP system mainly used the information of the spectral
structure. Therefore, the performance is good when the spectral
structure is more important than the temporal structure, such as

Table 5: Results of each event
Babycry Glassbreak Gunshot

ER F1[%] ER F1[%] ER F1[%]

MLP 0.67 72.0 0.22 88.5 0.69 57.4

DNN-HMM 0.46 76.5 0.19 89.7 0.72 50.5

DNN-HMM
+BHL 0.39 79.9 0.25 86.0 0.54 65.1

Table 6: Results of fusion system
Class-based average

ER F1[%]

Fusion system 0.38 78.3

glassbreak. Conversely, it can not describe the feature of babycry
with an obvious temporal structure. The DNN-HMM system
increased the ability to characterize timing. The result of babycry
detection were much better than that of MLP. And the result of
glassbreak detection was improved a little. However, the result
of gunshot detection was worse then others. On the one side, the
temporal and spectral structure of the gunshot is not easy to learn.
On the other side, we found that the insertion rate is 0.08, but the
deletion rate of gunshot detection is 0.63. The recalled parts of
the gunshot are almost right, but more than half of gunshot can
not be recalled. That means the DNN-HMM system did not fully
capture the features of gunshot, which belongs to an over-fitting
phenomenon. From the result, the transfer learning technology can
help reduce the degree of over-fitting by the gunshot model training.
The deletion rate of DNN-HMM+BHL for gunshot decreased to
0.49, and the insertion rate decreased to 0.04. However, the
performance of detecting the glassbreak became worse. The
deletion rate changed from 0.14 to 0.22. That means, for events
whose features are easy to learn, the transfer learning technology
may reduce the performance. At the same time, for those features
not obvious, transfer learning can help a lot.

4.2. Fusion experiment

Through the above analysis, we found that the transfer learning is
good at learning the hard events but can not help the easy-learning
events. Thus, we selectively chose the transfer learning for different
events. The result is shown as Table. 6. The error rate result
decreased to 0.38.

5. CONCLUSION

We proposed a new application of transfer learning in rare SED base
on a DNN-HMM hybrid system, and applied it to the DCASE2017
challenge task 2. We compared our proposed method to MLP
system and standard DNN-HMM sytem. Our proposed method has
the best performance, and achieved an average error rate of 0.38
(F-score of 78.3%) on the event-based evaluation.

In future work, we will try to improve the system performance
in three ways. First, the fbank features will still lose some useful
information, we should find more suitable features for the sound
event detection, such as bottleneck features. Second, DNN is not
suitable for modeling data with timing structure. We need to try
more types of network structures to describe the spectral features,
such as RNN, LSTM. At last, the restrictions of HMM on state
jumps are not necessary, we need to find a more efficient way to
describe the temporal structure.

6. REFERENCES

[1] P. Laffitte, D. Sodoyer, C. Tatkeu, and L. Girin, “Deep
neural networks for automatic detection of screams and
shouted speech in subway trains,” in 2016 IEEE International



Detection and Classification of Acoustic Scenes and Events 2017 16 November 2017, Munich, Germany

Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2016, pp. 6460–6464.

[2] G. Parascandolo, H. Huttunen, and T. Virtanen, “Recurrent
neural networks for polyphonic sound event detection in real
life recordings,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2016, pp. 6440–6444.

[3] J. Schr, J. Anemiiller, S. Goetze, et al., “Classification of
human cough signals using spectro-temporal gabor filterbank
features,” in 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2016,
pp. 6455–6459.

[4] Y. Wang, L. Neves, and F. Metze, “Audio-based multimedia
event detection using deep recurrent neural networks,” in
2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2016, pp. 2742–
2746.

[5] E. Benetos, M. Lagrange, M. D. Plumbley, et al., “Detection
of overlapping acoustic events using a temporally-constrained
probabilistic model,” in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2016, pp. 6450–6454.

[6] E. Miquel, M. Fujimoto, and T. Nakatani, “Acoustic
event detection in speech overlapping scenarios based on
high-resolution spectral input and deep learning,” IEICE
TRANSACTIONS on Information and Systems, vol. 98, no. 10,
pp. 1799–1807, 2015.

[7] A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah,
E. Vincent, B. Raj, and T. Virtanen, “DCASE 2017 challenge
setup: Tasks, datasets and baseline system,” in Proceedings
of the Detection and Classification of Acoustic Scenes
and Events 2017 Workshop (DCASE2017), November 2017,
submitted.

[8] G. Valenzise, L. Gerosa, M. Tagliasacchi, F. Antonacci, and
A. Sarti, “Scream and gunshot detection and localization for
audio-surveillance systems,” in Advanced Video and Signal
Based Surveillance, 2007. AVSS 2007. IEEE Conference on.
IEEE, 2007, pp. 21–26.

[9] A. Temko and C. Nadeu, “Acoustic event detection in
meeting-room environments,” Pattern Recognition Letters,
vol. 30, no. 14, pp. 1281–1288, 2009.

[10] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen, “Acoustic
event detection in real life recordings,” in Signal Processing
Conference, 2010 18th European. IEEE, 2010, pp. 1267–
1271.

[11] X. Zhuang, X. Zhou, M. A. Hasegawa-Johnson, and
T. S. Huang, “Real-world acoustic event detection,” Pattern
Recognition Letters, vol. 31, no. 12, pp. 1543–1551, 2010.

[12] Q. Kong, I. Sobieraj, W. Wang, and M. D. Plumbley,
“Deep neural network baseline for dcase challenge 2016,”
Proceedings of DCASE 2016, 2016.

[13] M. Espi, M. Fujimoto, Y. Kubo, and T. Nakatani, “Spectro-
gram patch based acoustic event detection and classification
in speech overlapping conditions,” in Hands-free Speech
Communication and Microphone Arrays (HSCMA), 2014 4th
Joint Workshop on. IEEE, 2014, pp. 117–121.

[14] I. McLoughlin, H. Zhang, Z. Xie, Y. Song, and W. Xiao,
“Robust sound event classification using deep neural network-
s,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 23, no. 3, pp. 540–552, 2015.

[15] Y. Aytar, C. Vondrick, and A. Torralba, “Soundnet: Learning
sound representations from unlabeled video,” in Advances in
Neural Information Processing Systems, 2016, pp. 892–900.

[16] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke,
A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A. Saurous,
B. Seybold, et al., “Cnn architectures for large-scale audio
classification,” in Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on. IEEE,
2017, pp. 131–135.

[17] T. Hayashi, S. Watanabe, T. Toda, T. Hori, J. Le Roux,
and K. Takeda, “Blstm-hmm hybrid system combined with
sound activity detection network for polyphonic sound event
detection,” in Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on. IEEE,
2017, pp. 766–770.

[18] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[19] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on knowledge and data engineering, vol. 22,
no. 10, pp. 1345–1359, 2010.

[20] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
et al., “The kaldi speech recognition toolkit,” in IEEE 2011
workshop on automatic speech recognition and understand-
ing, no. EPFL-CONF-192584. IEEE Signal Processing
Society, 2011.

[21] http://htk.eng.cam.ac.uk.

[22] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics
for polyphonic sound event detection,” Applied Sciences,
vol. 6, no. 6, p. 162, 2016. [Online]. Available: http:
//www.mdpi.com/2076-3417/6/6/162

[23] http://www.cs.tut.fi/sgn/arg/dcase2017/.


