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ABSTRACT 

In this paper, we trained and evaluated an acoustic sound event 

classifier that uses a combination of stereo and mono features. 

For stereo features, we treated the time difference of arrival 

(TDOA) as a random variable and calculated its probability den-

sity function. For mono features, Mel-frequency cepstral coeffi-

cients (MFCCs) and their 1st and 2nd derivatives were extracted. 

A recurrent neural network (RNN) with long-short term memory 

(LSTM) was constructed to perform multi-label classification. 

Training with the 4-fold validation dataset given by 

DCASE2017 challenge [5], model parameters were chosen 

based on the best average performance. The proposed TDOA 

plus MFCC features combined with the RNN-LSTM model 

achieved a segment-based error rate of 0.77. In DCASE2017 

challenge, the proposed model gets segment-based error rate of 

0.9749 and F-score of 40.8% in overall evaluation dataset. 

 

Index Terms— Sound Event Detection, Recurrent Neural 

Network, Long-Short Term Memory, Time Difference of Arrival 

1. INTRODUCTION 

Sound event detection (SED) attracts attention in recent years for 

home applications. In real life, sound events happen everywhere, 

anytime, and can mix with one another. A SED system has to 

deal with overlapping events under noisy acoustic conditions. 

Thus, it is challenging to design a SED system that can accurate-

ly estimate event onset and offset time. Existing methods include 

non-negative matrix factorization (NMF) [1][2], neural networks 

(NNs) [3][4], and so on. NMF based methods intrinsically allow 

events to overlap in time. NNs, capable of automatic extraction 

of signal representations from the input data in a flexible manner, 

have exhibited excellent performance in classification tasks 

across different application domains; in [3], a deep neural net-

work (DNN) with fully-connected hidden layers was built to take 

concatenated features as its input and solve the time dependency 

problems. In [4], an RNN-LSTM structure exhibited capability to 

handle sequential data, and achieved a high performance in 

DCASE2016.  

    Inspired by [4], we decided to choose RNN-LSTM as our clas-

sification model while using stereo and mono input features. 

Post-processing techniques are also considered. In brief, two sets 

of features are extracted --- the first set contains 20 Mel-

frequency cepstral coefficients (MFCC) and their 1st and 2nd 

derivatives; the second set describes a probability density func-

tion (PDF) of time difference of arrival (TDOA), or equivalently 

the sound direction of arrival (DOA), sampled at a number of 

different latencies (or equivalently arrival angles [8] under the 

far-field assumption). An RNN-LSTM model is trained by these 

features. Afterwards, the output labels are subject to smoothing. 

The rest of this paper is organized as follows: Sec. 2 and 3 de-

scribe the feature extraction methods and the learning methodol-

ogy, respectively. Sec. 4 reports and discusses the event detection 

and classification performance of the present system on 

DCASE2017 database. Sec. 5 gives the conclusions. 

2. FEATURE EXTRACTION 

This section describes feature extraction in details. 

2.1. MFCC Settings 

MFCC is widely used in speech recognition and audio pro-

cessing. It partitions the audible frequency range into non-

uniform bandwidths based on human auditory perception. In this 

research, MFCC is extracted by following configuration: frame 

length = 40ms, 50% overlap, Hann windowing, 40 Mel-filters, 

and 20 discrete cosine transform coefficients. The 1st and 2nd 

derivatives with respect to time are also calculated. We retain the 

log energy term in MFCC to reflect the difference in sound vol-

ume between different kinds of sound events. Finally, z-

normalization is performed so each feature has a zero mean and 

standard deviation of one. 

2.2. TDOA 

Humans are known to be able to distinguish different sound 

sources based on binaural cues. For low frequency components 

in particular, the human auditory system is known to be able to 

perform neuro-biological calculation of the direction of arrival 

based on interaural time difference (ITD) [7]. By informally 

listening to the materials given by this year’s DCASE via a 

headphone, we found that some events could be perceived bin-

aurally as if the direction of arrival is changing. Therefore, we 

attempt to imitate the human auditory system by jointly consid-

ering the signals received by two channels so as to estimate the 

time difference of arrival (TDOA) of each event. We are inter-

ested in seeing if the event classification accuracy could be im-

proved by including TDOA-based features. 

    The TDOA is defined as follows, 

∆𝑡 = 𝑡𝑅 − 𝑡𝐿,         (1) 

where 𝑡𝑅 and 𝑡𝐿 denote the time it takes for a sound to propagate 

from the source location to the right and left channel, respective-

ly. If the source moves from the recording pair of microphones’ 

left to their right, the TDOA would decrease. We adopted a tech-
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nique to estimate TDOA via probabilistic modeling [8]. The 

probability density function of TDOA is written as follows:  

𝑝𝑇𝐷𝑂𝐴(∆𝑡) = ∏ 𝑝𝐼𝑃𝐷,𝑛(2𝜋𝑛𝑓𝑠∆𝑡 𝑁⁄  𝑚𝑜𝑑 2𝜋)
𝑁

2⁄ −1

𝑛=1                   (2) 

where 𝑝𝐼𝑃𝐷,𝑛  is PDF of inter-channel phase difference (IPD) 

between left and right, 𝑛 is the frequency index, 𝑓𝑠  denotes the 

sampling frequency, and 𝑁 denotes the length of FFT. Assuming 

that the distance 𝑑mic between two microphones is known, the 

time difference ∆𝑡  should be limited within the range 

[−
𝑑mic

𝑐
,

𝑑mic

𝑐
], where 𝑐 denotes speed of sound. Figure 1 shows a 

typical variation of the PDF against time when a car passes by. 

The brightness indicates high probability density. The audio clip 

was selected from in this year’s DCASE database. By inspection, 

we can infer that the car sound recorded in this clip moved to 

microphones’ right hand side because TDOA decreases from 

approximately 1.6 to 2.5 seconds. Empirically, we actually per-

ceived that the car moves to right via the headphone.  

    Hence, a maximum likelihood estimation of TDOA can be 

obtained as follows, 

∆�̃� = 𝑎𝑟𝑔max
∆𝑡∈[−

𝑑𝑚𝑖𝑐
𝑐

,
𝑑𝑚𝑖𝑐

𝑐
]
   𝑝𝑇𝐷𝑂𝐴(∆𝑡),                                    (3) 

Here, ∆�̃�  can be used as one single feature that varies from one 

frame to the next. In addition to using ∆�̃�, it is possible to use the 

entire PDF of TDOA as a feature vector. In this work, we sample 

the range of possible TDOAs at 65 equally spaced points. In 

principle, the TDOA vector can be concatenated with MFCCs 

(and its derivatives) directly to train the RNN-LSTM model. In 

practice, we subtract the feature vector by its maximum for each 

frame so the peak value is always 0. 

 

 

Figure 1: variation of 𝑝𝑇𝐷𝑂𝐴(∆𝑡) against time for a “car” 

event in the DCASE2017 database 

 

3. SYSTEM DESCIPTION 

This section describes the details of system configurations and 

training methods. The system diagram is shown in Fig. 2. 

3.1. System Overview 

We apply short-time feature extraction mentioned in Sec. 2 and 

train a RNN-LSTM sound event classifier. When training a 

RNN-LSTM model, the best combination of the following pa-

rameters is searched exhaustively: the learning rate, the number 

of timesteps in RNN-LSTM, and the batch size. Obeying the 

official instruction to perform 4-fold training, we obtain four 

models with different combinations of parameters. The best 

training parameters are determined based on the average valida-

tion loss.  

    Afterwards, we use the best parameters to train the RNN-

classifier with all the training data and predict the occurrence of 

sound events in the official DCASE testing dataset. The predic-

tion is subject to post-processing (to be described in 3.4) to pro-

duce reliable event onset and offset time. 

 

 

Figure 2: System overview 

 

3.2. RNN-LSTM 

RNNs differ from traditional neural networks in one major way-- 

in traditional neural networks, data are passed forward, and 

weights are modified via the back propagation algorithm. Sam-

ples in the database are regarded as temporally independent. 

RNNs, in contrast, consider time dependency. The output of 

RNNs depends upon the present data and previous data. There-

fore, RNNs are supposed to handle data that are acquired in time 

sequentially. The RNN structure had suffered from the vanishing 

and exploding descent problem in the past, but in recent years 

the problems have been solved by the usage of long-short term 

memory (LSTM) [9], among other solutions as well.  

 

 
Figure 3: RNN-LSTM architecture 

 

The RNN-LSTM architecture is depicted in Fig. 3. The main 

equations for its operation are listed below [9][11],  

𝑖𝑡 = 𝜎(𝑊𝑖ℎℎ𝑡−1 +  𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑓ℎℎ𝑡−1 +  𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓) 

𝑜𝑡 = 𝜎(𝑊𝑜ℎℎ𝑡−1 +  𝑊𝑜𝑥𝑥𝑡 + 𝑏𝑜)                                      (4) 

𝑐𝑡 = 𝑓𝑡⨂𝑐𝑡−1 + 𝑖𝑡⨂tanh(𝑊𝑐ℎℎ𝑡−1 +  𝑊𝑐𝑥𝑥𝑡 + 𝑏𝑐) 

ℎ𝑡 = 𝑜𝑡⨂tanh (𝑐𝑡) 
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where  𝑖𝑡, 𝑓𝑡 and 𝑜𝑡 represent input gate, forget gate, and output 

gate respectively, 𝑐𝑡 and ℎ𝑡 are memory cell and cell output in 

present; in Eq. (4), the 𝑊 terms (with different subscripts) are 

weight matrices, 𝑏 terms are the biases, and 𝜎 is an activation 

function, ⨂ is element-wise product operator.  

    What makes LSTM unique is the usage of the gates. The gates 

are controlled by the activation function so they produce output 

within a fixed range. The memory cell 𝑐𝑡  receives previous 

memory cell 𝑐𝑡−1 , previous output ℎ𝑡−1 , and present input 𝑥𝑡 . 

The data go through input gate and the memory-cell output goes 

through forget gate. The next memory cell can preserve the 

characteristic of the previous data while responding to new input 

data at the same time. Thus it has the advantage to handle se-

quential data.  

    The system configuration was set as follows --- the input layer 

has the same number of units as the dimension of the feature 

vectors; the hidden part consists two LSTM layers each with 32 

units; the final layer is fully-connected with 6 units representing 

all of the targeted sound events, for which the activation function 

is the sigmoid function and the loss function is the binary cross 

entropy. The RMSProp algorithm [10] is used for weight opti-

mization. Occasionally, we adjust the model structure slightly 

while dealing with different features. The details will be de-

scribed in section 4.3. As for model parameters, we tried out all 

combinations between the following parameter values: the learn-

ing rate at 0.00005, 0.0001, or 0.0005, the batch size of 32 or 64, 

and the number of timesteps at 50, 100, or 150. The best combi-

nation is thus determined based on average validation loss. 

3.3. Thresholding 

While the RNN-LSTM model is supposed to produce binary 

labels, the output of the final layer takes continuous values be-

tween 0 and 1. A threshold for event activation needs to be de-

termined for every targeted event. For this purpose, we treat 

each event as a different classification task, and exhaustively 

search for the best threshold value between 0.2 and 0.8 in steps 

of 0.012. Error rates are recorded in a fold-wise manner, and the 

best threshold for each targeted event is determined so as to 

minimize the error rate across four folds defined in the official 

DCASE2017 instruction. 

3.4. Post-processing 

Heuristic post-processing techniques are applied to reduce over-

ly frequent switching between event onsets and offsets. First, 

activations are merged if the gap in between is shorter than 150 

frames (or equivalently, 3.0 second). Then, we calculate the 

distribution of the duration for each targeted event class and 

remove an event from the final list if its duration is shorter than 

100 frames (or equivalently, 2.0 second).  

 

4. EVALUATION 

4.1. Dataset and Metrics 

TUT Sound Events 2017 dataset [5] was made available for 

DCASE2017 challenge task 3. The whole dataset for 

DCASE2017 task 3 consists of real audio recordings from the 

street scene, and it was divided into a development part and an 

evaluation part. All recordings are stereo and were digitized at a 

sampling rate of 44.1 kHz with 24-bit resolution. Target events 

consist of 6 classes: brakes squeaking, car, children, large vehi-

cle, people speaking, and people walking. Label for event onsets 

and offsets are provided for the development part of the database 

so supervised learning can be conducted. 

    An evaluation metrics [6] for task 3 is also defined precisely; 

the performance will be judged by segment-based error rate, and 

the length of the segments is 1.0 second. 

4.2. Baseline 

The DCASE2017 challenge baseline system [5] uses a multi-

layer perceptron (MLP) structure with the log mel-band energy 

as the input features. The feature is also calculated every 20ms 

with a 50% overlap between adjacent frames. The MLP classifi-

er takes five consecutive frames into consideration at once so as 

to handle time-dependency. The baseline system achieves a 

segment-based error rate of 0.69 and an F-score of 56.7% by 

testing across all four of the officially defined folds. 

4.3. Features and structures 

Table 1 summarizes the various structures we have tuned and 

evaluated in experiments. Table 2 summarizes the features we 

use for training the system. 

 

 

 Description 

Architecture 1 

(𝑎𝑟𝑐ℎ1) 

Input -> 2 hidden layer (32 units) -> 1 

fully-connected output layer (6 units) 

Architecture 2 

(𝑎𝑟𝑐ℎ2) 

Input->1 fully-connected layer (39 units)  

-> 2 hidden layer (32 units) -> 1 fully-

connected output layer (6 units) 

Architecture 3 

(𝑎𝑟𝑐ℎ3) 

Input1 -> 2 hidden layer (32 units) -> M1 

Input2 -> 2 hidden layer (32 units) -> M1 

 M1 -> 1 fully-connected output layer (6 

units) 

Architecture 4 

(𝑎𝑟𝑐ℎ4) 

Input1 -> 2 hidden layer (13 units, 1 unit) -

> M1 

Input2 -> 1 hidden layer (1 unit) -> M1 

 M1 -> 1 fully-connected output layer (6 

units) 

 

Table 1: RNN-LSTM structure description. Arch1 and arch2 

are single training lines. Arch3 and arch4 start with 2 training 

lines and combine them into the merging model M1. 

 

Features Description 

MFCC39 
40 Mel-filters, 20 DCT, 13 MFCCs, delta and 

acceleration 

MFCC60 
40 Mel-filters, 20 DCT, 20 MFCCs, delta and 

acceleration 

TDOA65 65 log probabilities of TDOA 

TDOA1   
1 maximum-likelihood TDOA for each frame 

and processing with median filter of length 5. 

 

Table 2: Features used for training. The subscripted number 
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attached to the feature name denotes the dimension of the 

feature vectors. 

 

4.4. Performance of the methods 

Table 3 summarizes the performance of different combinations 

of features and architectures. The results show that MFCC60 -

based combinations achieve a segment-based error rate of 0.83. 

The combination of MFCC features and TDOA features with 

𝑎𝑟𝑐ℎ3 reaches the best performance with a segment-based error 

rate of 0.77. The present results suggest that it helps to include 

TDOA-based features in terms of segment-based recognition 

accuracy. However, by examining the error rates for different 

classes of sounds, we found that the “car” recognition error rate 

in MFCC60+TDOA65+𝑎𝑟𝑐ℎ3 is significantly lower compared to 

others classes. We also noticed that the “car” event seems to 

outnumber other events in this dataset of street sounds. There-

fore, we argue that the inclusion of TDOA might not help so 

much in other scenes if none of the target events originate from 

fast-moving sound sources. For this dataset, note that even using 

TDOA65 alone achieves an error rate of 0.85; this performance 

is not much worse than using MFCCs. 

 

Models Raw Post-processing 

Baseline - 0.69 

MFCC60+𝑎𝑟𝑐ℎ1 0.86 0.83 

MFCC60+𝑎𝑟𝑐ℎ2 0.91 0.85 

TDOA65+𝑎𝑟𝑐ℎ1 0.88 0.85 

MFCC39+𝑎𝑟𝑐ℎ1 0.92 0.80* 

MFCC39+TDOA1+

𝑎𝑟𝑐ℎ4 
1.5 1.49 

MFCC60+TDOA65+

𝑎𝑟𝑐ℎ3 
0.81 0.77 

 

Table 3: Segment-based error rates achieved by various combi-

nations of features and architectures. (*: For MFCC39+𝑎𝑟𝑐ℎ1, the 

performance 0.80 was obtained by averaging over only three 

folds because we encountered an erroneous situation in which no 

event was detected in fold #4). 

4.5. Performance in Evaluation data 

Evaluation dataset contains 8 recordings with 2~5 minutes as the 

same configurations as section 4.1. We will evaluate the model 

performance by calculating segment-based error rate, and F-

score is calculated as well in evaluation dataset. The RNN-

LSTM model with 𝑎𝑟𝑐ℎ3 achieves the segment-based error rate 

of 0.9749, and F-score of 40.8%. Table 4 shows the class-wise 

performance. The “car” event recognition error rate is 0.8315. It 

is still much better than other events. The “brakes squeaking” 

event gets the error rate of 1 means that the event is not detected 

by the model in all evaluation dataset. The rest of the class 

events get the error rate over 1.  

 

 

 

Target event Error rate 

Brakes squeaking 1 

Car 0.8315 

Children 2.4222 

Large vehicle 2.0678 

People speaking 1.6367 

People walking 1.3094 

 

Table 4: Class-wise segment-based error rates calculated in 

evaluation dataset. 

5. CONCLUSION 

Through the experiments we can see that, in terms of lowering 

the segment-based error rates, it helps to include both the stereo 

(TDOA) features and the mono (MFCC) features. The RNN-

LSTM model reached an error rate of 0.77, better than using 

only the TDOA features (0.85) or using only the MFCC features 

(0.83) at their best. Even though the present performance in 

terms of segment-based error rate is inferior to the baseline 

(0.69), we would suggest that taking multiple channels of re-

cordings into account is generally a good practice when attempt-

ing to detect and classify acoustic events, especially when some 

of the targeted sounds might originate from moving sources. 

These being said, we submitted our results for DCASE2017 

challenge using the present parameters, features (MFCC60 + 

TDOA65), and architecture (𝑎𝑟𝑐ℎ3). In DCASE2017 challenge, 

the model achieves segment-based error rate of 0.9749 in overall 

evaluation dataset. 
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