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ABSTRACT

In this paper, we propose a class wise distance based approach
in a neural network based acoustic event detection system. The
neural network output probabilities are updated by calculating the
distance between the acoustic features of each frame and the class
wise distance of each event class. The detected acoustic segments
are re-evaluated segmentally using the class wise distances. Cross-
validation detection results on the development set of DCASE2017
show the efficiency of the proposed method by achieving a 4%
absolute reduction in segment-based error rate compared to the
baseline system.

Index Terms— acoustic event detection, class wise distance,
re-evaluation

1. INTRODUCTION

Acoustic event detection (AED) has been widely applied in many
real world applications, such as surveillance systems [1], siren
detection systems [2], chew event detection systems [3] and human-
computer interaction [4]. Intra-class variations and the spectral-
temporal properties across classes pose great challenges to AED.
Due to the varied real world applications of AED and the challenges
being faced, some campaigns, such as DCASE [5][6][7] have
attempted to capture a wide range of variations in the design of the
AED database [8].

Many approaches have been proposed to deal with the
challenges that AED systems now face. Gaussian Mixture Models
(GMM) based methods are presented in [9] and Hidden Markov
Models (HMM) based AED methods have been proposed in [10].
Some other ideas, such as random forest based approaches have
been applied in [11][12][13]. The DCASE challenge series has
been running since 2013 and many novel ideas have emerged.
One popular approach for the AED in DCASE challenge is the
neural network based methods. Among the neural network based
AED systems, the detection task is considered as a multi-label
classification problem. Deep neural network (DNN) based AED
systems were developed in [14][15]. In [16], convolutional neural
network (CNN) was adopted and a recurrent neural network (RNN)
based AED was presented in [17][18]. A global threshold is
applied to the neural network output probabilities to determine the
active acoustic events at each time index and the post processing
strategy is adopted to generate the final acoustic event segments.
However, a global threshold applied to all the event classes cannot
capture the variable polyphonic levels [19] and cannot represent the
characteristics of all the event classes. The insertion error increases
and recall accuracy decreases if the global threshold is set too low

or too high.
To deal with the different polyphonic levels across time and

the different characteristics of the audio signals across classes,
this paper presents a method to utilize the class wise distance to
make the output probabilities of each frame belonging to different
event classes more discriminative. The class wise distance is
used to update the neural network output probabilities and to re-
evaluate the detected acoustic events segmentally. The neural
network output probabilities are then updated by adopting the class
wise distance based probability. The class wise distance based
probability is represented by calculating the distance between the
acoustic features of each frame and the mean acoustic features of
each acoustic event class. There are two advantages in adopting
the class wise distance based approach. To begin with, this will
automatically update the probabilities that each frame belongs to
different acoustic event classes using the class wise information,
which makes the probabilities more discriminative. Secondly, the
class wise distance based approach can be utilized as a strategy
to re-evaluate the detected acoustic event segments from an even
longer duration by re-evaluating the acoustic events segmentally
rather than by frame.

This paper is organized as follows. In Section 2, we briefly
introduce the neural network based AED system. Our proposed
approaches and algorithms are presented in Section 3. In Section
4, we provided the experimental results and analysis followed by
conclusion and future work in Section 5.

2. THE NEURAL NETWORK BASED AED SYSTEM

The neural network based AED system considers the
polyphonic acoustic event detection as a multi-label classification
problem. Fig. 1 illustrates the task of the polyphonic acoustic
event detection. As shown in Fig. 1, each frame may correspond to
more than one event label (“car” overlaps with “people speaking”,
“large vehicle” and “brakes squeaking” at different time index). The
system is composed of three parts: the feature extraction, the neural
network training and the post processing.

2.1. Feature extraction

The feature representations adopted by the baseline system are the
log mel-band energies. A short-time Fourier transform (STFT) is
applied over a 40ms window of the audio and a 50% hop size
is used. To capture the time dependency, 5 consecutive frame
representations are used to form a 200 dimensional input feature
vector. The acoustic features are normalized to a zero mean and
unit variance space across the whole database. The implementation
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Figure 1: The polyphonic acoustic event detection task.

of the feature extraction is based on speech analysis via librosa1.

2.2. Neural network training

Two neural network models are used in this paper. One is the multi-
layer percepton (MLP) and the other is the CNN. The DCASE2017
challenge organizers provided the MLP based AED system. The
multi-layer percepton network includes a fully connected neural
network with 2 hidden layers. The number of hidden unit nodes for
each layer is 50. The Relu [20] activation function and the Adam
[21] optimizer are used to optimize the weights between different
layers. The sigmoid output and binary cross entropy loss function
are used to train the multi-layer percepton network. Dropout [22]
strategy with a value of 0.2 and early stopping criteria which starts
after 100 epochs are adopted to overcome the over-fitting problem.
The learning rate is set to 0.001.

In this paper, we also extended the MLP based baseline system
by substituting the multi-layer percepton neural network with a
convolutional neural network. The convolutional neural network
includes two convolutional layers, two max-pooling layers, two
batch normalization layers, a flattening layer and a sigmoid output
layer. The first layer performs a convolution over the input acoustic
features with 16 kernels characterized by 3 by 3. The second
convolutional layer is the same as the first one except that the
number of kernels is set to 32 in order to obtain a higher level
representation.

2.3. Post processing

For testing, the trained neural network outputs the probabilities that
each frame belongs to each acoustic event class. Then a threshold
is adopted to determine whether an acoustic event is active at that
frame index.

The median filtering strategy is applied to post process the
event activity. The length of the filtering window is set to 0.54s.
Afterwards, the minimum event length and the minimum event gap
are set to 100ms to determine the final beginning and end times of
the detected acoustic events.

3. CLASS WISE DISTANCE BASED AED SYSTEM

To make the output probabilities of each frame belonging to the
different event classes more discriminative and the detected events
to be re-evaluated from a longer duration level, we propose in this
work to incorporate a class wise distance measure to the baseline
system. Fig. 2 is the flowchart of the proposed AED system.
The class wise distance based probability is used to update the
neural network output probabilities and the class wise distance

1https://github.com/librosa

based re-evaluation is to re-evaluate the detected acoustic events
segmentally. How the class wise distances, class wise distance
based probabilities are calculated and the class wise distance based
re-evaluation strategy is applied will be elaborated below.

3.1. Class wise distance calculation

The class wise distances are represented by the normalized
mean log-mel energies for each acoustic event class, which can be
expressed as:

Md(c) =

∑t=Ic
t=1 Xd(t)

Ic
(1)

where c, d, t mean the event class label, the dimension index
and the time index respectively. The Ic denotes the number
of training samples for the cth event class and Xd(t) is the d-
dimensional acoustic representation at the frame index t. The
acoustic representations are all normalized by subtracting the global
mean and dividing the global standard deviation across the whole
database.

Fig. 3 displays the class wise distance between every two
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Figure 2: The flowchart of the proposed AED system.

acoustic events. As can be seen in Fig. 3, the class wise mean
distance for most of the acoustic events can be discriminated
between each other except that the mean contours for the event
”car”, ”brakes squeaking” and ”large vehicle” are close and difficult
to be differentiated, which is consistent with the real-world human
being perceptions. Discriminative class wise distances between the
event classes makes it possible to utilize the class wise information
to improve the performance of the AED system.
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Figure 3: The class wise distances between every two acoustic event classes, where the x-axis is the feature dimension d and y-axis is the
normalized mean value Md(c) for the event class c.

3.2. Class wise distance based probability (CWPB)

After calculating the class wise distance for each event class,
the class wise distance based probability pdistc (t) at frame index t
is calculated as follows:

pdistc (t) = e−(dist(t,c))2 (2)

dist(t, c) =

∑d=D
d=1 f(Xd(t),Md(c))

D
(3)

where pdistc (t) is the class wise distance based probability at the
frame index t for the cth class. The D is the total dimension for the
log-mel energies and the f function denotes the Euclidean distance
operation.

3.3. Detection score averaging

The class wise information is utilized by averaging the neural
network output probabilities and the class wise distance based
probabilities:

puc (t) = α ∗ pc(t) + (1− α) ∗ pdistc (t) (4)

The puc (t) is the updated probability to be used to determine the
active events and the α is a coefficient which is experimentally set
to 0.8 in the proposed AED system. The preset global threshold 0.5
will be applied during post processing to the updated probability
puc (t) to determine the active event classes by frame.

3.4. Class wise distance based re-evaluation (CWRE)

After post processing, the detected acoustic events are in segmental
format with a beginning and end time (e.g from 1s to 3s, where the
detected acoustic event is the event ”car”). To further utilize the

class-wise distance information, the segmental acoustic events are
re-evaluated over a longer duration by calculating the re-evaluation
distance dseg,ĉ for each test segment:

dseg,ĉ = −
∑d=D

d=1 f(Aseg,d,Md(ĉ))

D
(5)

Here, ĉ, tb and te are the predicted acoustic event class label,
detected the beginning and end time respectively. The Aseg,d

denotes the average log-mel energies for the detected acoustic
event segment, which can be expressed as:

Aseg,d =

∑t=te
t=tb

Xd(t)

te − tb
(6)

Properly detected frames of event ĉ should exhibit average
energies Aseg,d close to the training data energies Md(c) and hence
in the proposed system, if the distance dseg,ĉ for a detected segment
does not rank the top k within all the classes, the detected segment
would be discarded. In this paper, the k is experimentally set to 3.

4. EXPERIMENTS

4.1. Database

The TUT sound event 2017 database [23] is used in this paper to
evaluate the performance of different systems. The TUT sound
event database is partitioned into development and evaluation set.
The development set is used to evaluate the performance of different
AED systems presented here and the evaluation subset is used
for the DCASE2017 challenge (the released evaluation database
is without any ground truth). For the development set, a cross-
validation setup is provided to uniform the reported results from
participants. The detailed description of the data recording and
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annotation procedure can be found in [23].
For the acoustic event detection task in DCASE2017 challenge,

the selected 6 target acoustic event classes are: “brake squeaking”,
“car”, “children”, “large vehicle”, “people speaking” and “people
walking”. The total duration for the training and the test subset for
each acoustic event class are shown in Table 1 and Table 2.

Table 1: Time duration (seconds) for the training subset for each
event class.

fold1 fold2 fold3 fold4
brake squeaking 70.08 86.80 79.02 66.20
car 1883.16 1405.46 1695.70 1729.60
children 303.52 328.66 267.80 107.54
large vehicle 682.46 665.66 617.02 629.20
people speaking 653.42 677.16 608.70 378.90
people walking 1069.54 1029.00 789.46 963.14

Table 2: Time duration (seconds) for the test subset for each event
class.

fold1 fold2 fold3 fold4
brake squeaking 30.62 13.90 21.68 34.50
car 348.82 832.52 542.24 508.40
children 32.32 7.18 68.04 228.30
large vehicle 182.32 199.12 247.76 235.58
people speaking 119.32 95.56 164.02 393.82
people walking 214.18 254.70 494.26 320.58

4.2. Evaluation metrics

The segment-based and event-based F-scores and error rates are
used to evaluate the different AED systems. The segment-based
F-score and error rate are calculated with respect to a segment. In
this paper, the duration for the evaluation segment is set to 100ms.
The event-based F-score and error rate are calculated with respect to
the event instances. A higher F-score or a lower error rate indicates
a better AED system. Detailed definitions about the F-score and
error rate are described in [24]

4.3. Experimental results and analysis

To demonstrate the efficiency of our proposed system, several
multi-layer percepton based AED systems are developed as
follows:
1) MLP: This system is a multi-layer percepton with median
filtering as the post processing technique as described in Section 2.
2) MLP-CWPB: This system uses a multi-layer percepton to train
the acoustic models together with the class wise distance based
probability.
3) MLP-CWRE: This system uses a multi-layer percepton to train
the acoustic models and the class wise distance based re-evaluation
strategy.
4) MLP-CW: This system uses a multi-layer percepton to train
the acoustic models and adopts both the class wise distance based
probability technique (CWPB) and the class wise distance based
re-evaluation strategy (CWRE).

Table 3 presents the performance details of each defined AED
system. As can be seen in Table 3, the system MLP-CW achieves

the best overall performance among the MLP based AED systems,
which indicates that the class wise distance based probability
technique and post processing strategy benefit the AED system.

To further demonstrate the effectiveness of the class wise

Table 3: F-scores and error rates for different AED systems.

Techniques
Metrics segment

F-score
segment

ER
event

F-score
event
ER

MLP 56.15 0.69 5.10 3.35
MLP-CWPB 56.71 0.69 5.51 3.34
MLP-CWRE 56.14 0.67 5.65 2.97
MLP-CW 57.11 0.67 6.42 3.17
CNN 56.17 0.67 8.87 3.05
CNN-CWPB 56.02 0.65 9.00 2.94
CNN-CWRE 56.18 0.65 8.80 2.83
CNN-CW 57.25 0.65 8.92 2.76
DCASE2017 baseline2 56.70 0.69 - -

distance based probability technique and the re-evaluation strategy,
the multi-layer percepton neural network is substituted by the
convolutional neural network, the structure of which is described in
Section 2.

From Table 3 it is evident that the CNN provides superior
performance to MLP across most measures. Table 3 also shows
the comparison between the development set baseline results from
the challenge organisers and our proposed system. Our proposed
system (CNN-CW) achieved a 0.55% absolute segment-based
F-score improvement and 4% absolute segment-based error rate
reduction.

5. CONCLUSION

This paper presents an approach to utilize the class wise information
to improve the performance of the AED system. The class wise
information makes the output probabilities more discriminative
and the class distance based re-evaluation strategy can evaluate
the acoustic events segmentally from a even longer duration.
Experimental results demonstrate the efficiency of the proposed
method by achieving a 4% absolute segment-based error rate
reduction over the DCASE2017 challenge baseline. However, class
wise distances for some events are too close to be discriminated (e.g
the event “brakes squeaking” and the event “large vehicle”) and how
to utilize the class wise distance when training the neural network
models to ease this effect will be our next research direction.
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