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Abstract— In this paper we explore three approaches
on bird audio detection. We establish a simple baseline,
experiment with handcrafted features and finally move
to Convolutional Neural Networks.

I. INTRODUCTION

For wildlife monitoring and other environmental
projects, detecting bird calls in audio recordings is
a common challenge, and can be a first step before
classifying the bird species [1], [2].

This paper deals with the bird audio detection task
from DCASE 2018 1. For this challenge, we were
provided with 3 data sets of audio files (each set
recorded under different condition e.g. time of day,
type of microphones, length of recording), as well as
0/1 labels to encode whether there was at least one
bird in the corresponding audio file. The task was
to develop a method that determines for new audio
files whether they included bird sounds, with a special
focus on generalisation to new recording conditions.
For evaluation we were provided with three different
data sets (two of them had new data sources, one
had the same source as the training data set, but
different files), where data set membership was known
for the evaluation files. The evaluation itself was done
by calculating the harmonic mean of the Area under
Receiver Operator Characteristic Curves (AUROCC)
for the predictions for each single data set - because of
this, the methods were encouraged not only to predict
0 or 1 for each file, but scores in the range [0, 1].

To tackle this problem, we initially made our own
baseline with simple features and classifiers with no
or few hyperparameters, such as Random Forest and
Logistic Regression.

Our more sophisticated approaches were based on
calculating the Mel-frequency spectrograms for each
file (trimming and looping audio as necessary to get

1http://dcase.community/challenge2018/
task-bird-audio-detection

uniform audio duration), then classifying those spec-
trograms with CNNs.

The first CNN architecture we implemented was
bulbul, which was a modification of the strongest-
performing method of a similar bird audio detection
challenge from 2017, suggested as a baseline by the
organizers of DCASE.

puffin was another classification method, with which
we tried to address bulbul’s lack of consideration given
to the generalisation problem for different recording
environments. Here, we trained in total six CNNs: One
per data set to classify the files, and three pairwise
discriminators. The dataset discriminators are used to
weigh the predictions of the classifiers.

We also tried to extract some more features our-
selves, to make learning easier for the neural networks
or other classification methods. This approach was
based on searching the spectrograms for patterns which
might indicate the bird call (connected high-energy
areas), then extracting windows around these patterns,
for which then some summary statistics are computed.
Furthermore we experimented with domain adaptation
methods. Since the results were too poor, we didn’t
include this approaches in our final submission.

II. RELATED WORK

Stowell et al. [1] discuss different concrete bird audio
detection tasks, and approaches to solve them, which
include energy, spectrogram cross-correlation and hid-
den Markov models. A simple energy-based approach
could be using a thresholding function, which is applied
to a short time-windows and band-limited frequencies,
which are expected to contain bird calls. Spectrogram
cross-correlation uses sound templates which are sup-
posed to represent the different classes, for which the
cross correlation is calculated over subwindows of the
spectrogram - these correlations can then be used as
features [1], [3]. Hidden Markov models, which use a
sequence of spectral vectors as input, are more powerful
than simple template-matching techniques and are also

http://dcase.community/challenge2018/task-bird-audio-detection
http://dcase.community/challenge2018/task-bird-audio-detection


often used in bioacoustics, for example in speech
recognition [1], [4].

A CNN-based approach (taking Mel-spectrograms of
uniform size as input) is described by Grill et al. [2],
where they compare different network architectures and
input transformations.

Shen et al. [5] show how to do domain adaptation - in
this case Wasserstein Distance Guided Representation
Learning - to overcome the difficulty of training and
test set originating from different distributions.

III. DATA SETS

The DCASE2018 challenge provides three datasets
for development: freefield1010, BirdVox-DCASE-20k
and warblrb10k. Furthermore, three evaluation datasets
are provided: Chernobyl, PolandNFC and held out
subset from warblrb10k. Datasets mostly contain 10
second long WAV files (44.1 kHz mono PCM). Al-
though stated differently in the challenge description,
the warblrb10k dataset contains recordings of lengths
between approximately two and forty seconds. The
files are manually labelled with 0 or 1, indicating the
absence/presence of a bird anywhere within the file.
The labelling accuracy of the ground truth is estimated
as 96.7% or better.
Since the main goal of this challenge is to develop a
model which generalises to different recording condi-
tions, the provided datasets are quite heterogeneous.
From the dataset descriptions these conditions are
roughly known for all development and evaluation sets:

• freefield1010: excerpts from field recordings
around the world and standardised for research.

• warblrb10k: smart phone recordings from around
the UK. Recordings include weather noise, traffic
noise, humans speech and even human imitations
of birds.

• BirdVox-DCASE-20k: collected from remote
monitoring units placed near Ithaca, NY, USA
during autumn of 2015.

• Chernobyl: collected with unattended remote
monitoring equipment in the Chernobyl Exclusion
Zone. Recordings cover different weather condi-
tions, mammal and insect noise and are sampled
across various environments such as abandoned
villages, grassland and forest areas.

• PolandNFC: recordings from monitoring autumn
nocturnal bird migration collected on 15 days from
September to November of 2016 on the Baltic
Sea coast, Poland. Clips contain different weather
conditions and background noises including wind,

Dataset #s #p #n

Development
BirdVox-DCASE-20k 2.000 10.017 9.983

freefield1010bird 7.690 1.935 5.755
warblrb10k 8.000 6.045 1.955

Evaluation
warblrb10k 2.000 ? ?
Chernobyl 6.620 ? ?

PolandNFC 4.000 ? ?

TABLE I: Size and class distribution of development
and evaluation data sets. #s denotes the number of
samples, #p is the number of positive and #n is the
number of negative samples

rain, sea noise, insect noise, human voice and deer
calls.

Beside differences in recording conditions, develop-
ment datasets differ also in their size and class distri-
bution (Table I). For evaluation datasets no information
about class distribution is given.

IV. METHODS

A. Baseline

To gain more insight into the difficulty of the given
task we start by creating a simple, yet stable baseline.
From the audio files we extract mel-filtered spectro-
grams with 128 bins, in the frequency range of 25 Hz
to 11025 Hz. The spectrograms are further normalized
to zero mean and unit variance. Two approaches are
considered for our baseline.

1) Simple Survey Statistics: For the first approach,
features based on the spectrogram representation of an
input file were calculated. The statistics include mean,
median, minimum, maximum of each bin. Classifica-
tion was done by a random forest with 10000 estimators
and logistic regression.

2) Framewise: For our second baseline approach
labels are predicted on a per frame level. The input
vector consists of the 128 bins of the Mel-spectrogram
and we used a random forest classifier. We considered
the provided, file based, ground truth as weak labels
and every frame of a file was labeled with the file
based label. The final prediction was done with logistic
regression on the predicted frame labels.

B. Convolutional Neural Network

Most promising results in previous bird detection
tasks where obtained by learning feature represen-
tations from raw (Mel-)spectograms with deep feed
forward convolutional neural networks (CNN).



Layer # nodes Output Dimension Activation
Conv(3× 3) 16 16× 998× 78 LeakyReLu
MaxPool(3× 3) - 16× 332× 26
Conv(3× 3)) 16 16× 330× 24 LeakyReLu
MaxPool(3× 3) - 16× 110× 8
Conv(1× 3) 16 16× 108× 8 LeakyReLu
MaxPool(1× 3) - 16× 36× 8
Conv(1× 3) 16 16× 34× 8 LeakyReLu
MaxPool(1× 3) - 16× 11× 8
Faltten 1408
Dense 256 256 LeakyReLu
Dense 32 32 LeakyReLu
Dense 1 1 Sigmoid

TABLE II: Architecture of bulbul

1) Input Features: For all three architectures the
same input features are used. Audio files are trans-
formed into a two dimensional spectral representation
by Short Time Fourier Transformation (STFT). Sam-
pling rate of provided audio files is 44.1 kHz. Window
size for Fast Fourier Transformation (FFT) is set to
W = 2048 which corresponds to 46.44 ms. For the
FFT, Windows are multiplied with a Hann function.
STFT hop size is set to 512 samples, one frame in
the spectrogram therefore corresponds to a time step
of 11.61 ms. The linear frequency scale is transformed
to the Mel scale by applying 80 triangular filters.
Frequencies below 25 Hz and above 15025 Hz are
ignored. We apply dynamic range compression to the
obtained power spectrogram by adding one and taking
the logarithm. Afterwards Mel bands are normalized to
zero mean and unit variance.
All architectures expect a fixed input size of 80×1000
(bands × frames), therefore samples shorter than 11.61
s are looped to the desired size.

2) Bulbul: The bulbul model is a rebuild of [2], orig-
inally created for BAD Challenge 2016/2017 hosted by
Queen Mary University of London. 2. The architecture
is described in Table II.

3) Puffin: A possible disadvantage of the bulbul
model is that it might not be able to generalize to
data recorded under different conditions. Results
from training and evaluating specialized models for
individual datasets indeed suggest that this is the
case. In our experiments specialized models perform
between 5 and 20 percentage points (pp) better than
models trained on datasets recorded under different
conditions, as can be seen in Table III and Table IV.
The idea of puffin is to use the predictive power of

2http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-
challenge/

Fig. 1: Architecture of puffin. D outputs the sample
similarity to each of the three training datasets (3-way
softmax). S1, S2 and S3 are specialized classifiers, each
trained on one of the training sets. The final prediction
is obtained by weighting the specialized prediction with
the corresponding similarity value.

specialized models combined with a pre-classification
stage which assigns new recordings to one of the
training sets based on similarity. For this similarity
pre-classification a CNN with the same architecture as
bulbul is used. We use a 3-way softmax to indicate
dataset simliarity for the final model. Predictions
of specialized models are combined by weighting
predictions with the corresponding softmax activation
of the pre-classification stage, as can be seen in Figure
1.
Discrimination between warblrb10k - ff1010bird
reaches an area under the receiver operating
characteristics curve (AUROCC) of 97%. For BirdVox-
DCASE-20k - warblrb10k and freefield1010bird -
BirdVox-DCASE-20k both discriminators reach
AUROCC over 99%, suggesting highly different
characteristics of datasets. Evaluation of discriminators
is done on hold-out sets with 30% of the original data.

Validation Set AUROCC ACC TPR FPR
BirdVox-DCASE-20k 0.9275 0.8674 0.8733 0.1390
warblrb10k 0.9234 0.8656 0.8159 0.0872
freefield1010bird 0.8984 0.8338 0.7787 0.1089

TABLE III: Results of training and validating bulbul
model on the same dataset (intra). Validation is done
with randomly selected 10% of samples.

4) Training: Training is done by stochastic gradi-
ent decent with mini-batches of size 64. The Adam
optimizer [6] with learning rate of 0.001 is used for
updates. The learning rate is decreased by a factor of 2



Validation Set AUROCC ACC TPR FPR
freefield1010bird 0.8592 0.8000 0.7297 0.1297
warblrb10k 0.8411 0.7693 0.8005 0.2620
BirdVox-DCASE-20k 0.7234 0.6587 0.5276 0.2103

TABLE IV: Results of training and validating bulbul
model on different datasets (inter) . Validation is done
with randomly selected 10% of samples.

after three epochs of no improvement. The number of
epochs is determined by early stopping, the patience
parameter is set to twelve epochs. Improvement is
measured in terms of AUROCC on the validation set.
One epoch consist of 1500 batch updates.
Recordings are augmented by cyclic random shifting in
time and random shifting of frequency bands ±1band.
Empty bands created by frequency shifting are linearly
interpolated.
All models use sigmoid activation as output function
for the bird classification task, therefore logistic loss is
the natural choice. In order to be able to extend the
pre-classification stage of puffin to multiple datasets
we chose softmax as activation and categorical cross
entropy as the loss function.

V. RESULTS

A. Baseline

The baseline uses stratified 3-fold cross validation.
Two training sets are combined and the third is used
for validation

Model AUROCC ACC TPR FPR
random forest 0.4909 0.5006 0.1756 0.3806
logistic regression 0.4921 0.5268 0.2241 0.3316
framewise 0.4854 0.4909 0.4883 0.5303

TABLE V: Baseline Validation results. Results are the
harmonic mean of individual results per fold

B. CNN

For bulbul and puffin we apply stratified 3-fold cross
validation, where one fold corresponds to one dataset.
Two folds are used for training and one for validation.
This procedure allows to estimate how models behave
under different recording conditions. For early stopping
and learning rate decay we randomly select a 10% sub-
sample of the data in the training folds as a validation
set.
For model performance estimation, the AUROCC of

the validation set is computed for each fold and av-
eraged via harmonic mean. This method is equal to
the evaluation procedure of submitted predictions on
the evaluation set. Results for bulbul and puffin are
summarized in Table VI. Best results where obtained
by combining both methods by averaging over their
predictions.

Model AUROCC ACC TPR FPR
bulbul+puffin 0.8171 0.7471 0.6303 0.1358
puffin 0.8170 0.7479 0.6353 0.1377
bulbul 0.8032 0.7374 0.6645 0.1843

TABLE VI: 3-fold cross validation results of models
puffin, bulbul and a averaged combination.

VI. CONCLUSION

Out of the three approaches we conducted experi-
ments on, only the CNN seems worthwhile to pursue.
The complexity of the problem is too large for the
simplest methods we used as our baseline. A hand-
crafted approach could be worthwhile, however a high
amount of domain knowledge would be necessary to
incorporate it in the classification process. What we
tried to achieve with it is most likely learnable by
the CNN without the manual adjustment of additional
hyperparameters.
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