
Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

SOUND EVENT DETECTION FROM WEAK ANNOTATIONS: WEIGHTED GRU VERSUS
MULTI-INSTANCE LEARNING
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ABSTRACT
In this paper, we address the detection of audio events in domes-
tic environments in the case where a weakly annotated dataset is
available for training. The weak annotations provide tags from au-
dio events but do not provide temporal boundaries. We report ex-
periments in the framework of the task four of the DCASE 2018
challenge. The objective is twofold: detect audio events (multi-
categorical classification at recording level), localize the events pre-
cisely within the recordings. We explored two approaches: 1) a
”weighted-GRU” (WGRU), in which we train a Convolutional Re-
current Neural Network (CRNN) for classification and then exploit
its frame-based predictions at the output of the time-distributed
dense layer to perform localization. We propose to lower the influ-
ence of the hidden states to avoid predicting a same score through-
out a recording. 2) An approach inspired by Multi-Instance Learn-
ing (MIL), in which we train a CRNN to give predictions at frame-
level, using a custom loss function based on the weak label and
statistics of the frame-based predictions. Both approaches outper-
form the baseline of 14.06% in F-measure by a large margin, with
values of respectively 16.77% and 24.58% for combined WGRUs
and MIL, on a test set comprised of 288 recordings.

Index Terms— Sound event detection, weakly supervised
learning, multi-instance learning, convolutional neural networks,
weighted gate recurrent unit

1. INTRODUCTION

The coming of Deep Learning [1] has opened a new era in the do-
main of artificial intelligence. Deep neural networks in particular
became the state of the art in many application domains involving
classification and detection tasks. Most often, these improvements
rely on the availability of ever-growing annotated datasets to train
the models. While many previous works that heavily rely on super-
vised training based on a precise manual annotation, new challenges
arise from the use of large datasets without supervision.

Recently, different databases of Terabytes of data have been re-
leased by Google. The Audioset database provides a large set of
audio data extracts from video [2]. Annotations for audio events are
mainly based on tags by YouTube users and do not contain temporal
information.

In that scope, the DCASE challenge includes a task on sound
event detection in domestic environment [3]. This task proposes
a framework to build a system that aims at detecting audio events
from a set of 10 classes of sound events forming a subset of Au-
dioset. More precisely, the aim is to provide starting and ending
boundaries of the audio events (strong labels) while the training set
relies only on global tags (weak labels). As mentioned in [3], the
duration of the targeted sounds depends heavily on their class. For

example, the class vacuum cleaner contains mostly audio events
of 10 seconds, while the class dog is mainly composed of sounds
shorter than half-second.

Sound event detection (SED) has been deeply investigated [4].
In real life, sound events overlap to produce a mixture. In the same
way, the current challenge aims at detecting overlapping sound
events, referred as polyphonic SED. Polyphonic SED covers a wide
set of applications including ecology [5] and surveillance [6]. The
detection of domestic sounds provides interesting clues for health
applications [7] and Intelligent Virtual Assistants such as Google
Home or Amazon Echo.

Ongoing research works on SED are mostly based on a Deep
Neural Networks (DNNs). They include fully-connected DNNs [8],
Convolutional Neural Networks (CNNs) [9] and Recurrent Neural
Networks (RNNs) [10]. Most of recent approaches are based on a
combination of layers including these different elements [11]. In
particular the issue of audio event detection using weakly labeled
data was addressed in [12, 13] and formulated into a Multi-Instance
Learning (MIL) problem.

The baseline method provided by the challenge organizers re-
lied on two Convolutional Recurrent Neural Networks (CRNNs):
the first one for file-level audio classification (weak labels), the sec-
ond one for the localization of the previously detected events within
the recordings (strong labels). We explored two separate approaches
that both outperformed the baseline.

Firstly, we modify the recurrent layer of a CRNN to be able
to weight the influence of the hidden state of the recurrent cells.
Secondly, we generalize to our multiclass classification problem a
new loss function inspired by Multi-Instance Learning (MIL), very
recently proposed for singing bird localization in [14].

Section 2 describes the first approach, that we will refer to as
“weighted Gated Recurrent Unit” (WGRU), followed by a section
describing the second approach (MIL). We report the experimental
setup in Section 4, and finally analyze the results and limitations of
the two approaches.

2. WEIGHTED GATED RECURRENT UNIT (WGRU)

2.1. Temporal detection from an adapted baseline method

As mentioned above, the baseline system is based on two convolu-
tional recurrent neural networks (CRNN). The first CRNN detects
the presence/absence of the ten sound events of interest at file-level.
Then, a second CRNN is used for localization. Still, we may assume
that the temporal information required for localization is reachable
from the first CRNN. In this way, after the classification training of
the first CRNN on weak labels, we propose to simply remove its
final global average pooling layer in order to get frame-based pre-
dictions used for detection. This modified model produces frame-
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level predictions thank to its time-distributed dense comprised of
ten sigmoid units corresponding to the ten classes of interest.

In the following, we will focus on the recurrent layer of this
CRNN, since modifications of its internal functioning had to be
made to make localization possible.

2.2. Recurrent Neural Networks

Recurrent Neural Networks capture temporal behavior in sequential
data [15]. The hidden state of a RNN cell depends on xt, the incom-
ing output of the previous layer at time t, and ht−1, its hidden state
at time t− 1, as defined in Equation 1:

ht = g(Wxt + Uht−1 + b) (1)

where g is a point-wise activation function (hyperbolic tangent
function in our case); and W and U are weight matrices to be
learned together with the bias b.

2.3. Weighted RNN

RNNs have proven to model sound events efficiently, since these
often have an underlying sequential structure [10].However, some
audio event classes have different typical durations, as described
in [3]. Long-duration sounds (vacuum cleaner, running water) are
expected to be easier to model by an RNN than short sounds (dog,
cat). In order to adjust our models to different kinds of sounds, we
propose a new adaptation of RNNs. This approach aims at con-
figuring different kinds of temporal behavior according to the class
of a sound event. As a first attempt in that direction, we weight
the influence of the hidden state of the recurrent cells by a factor
ω ≤ 1, which we set globally for the classes on a development
subset. This modifies the impact of sequentiality in the RNN, as
formulated in equation 2. Figure 1 shows the impact of the weight
on a cell at time t, colored in blue. The rational behind lowering the
impact of the hidden states lies in the fact that the CRNN is trained
to detect a sound event at file level. Thus, if an event is detected
at the beginning of the file, the hidden states are expected to keep
that information throughout the file even if the detected event is not
present in the whole file, and the localization afterwards will fail.

The baseline method is based on Gated Recurrent Units
(GRU) [16]. In the following, we will use weighted RNN mod-
els using a GRU layer that we will be referred to as Weighted GRU
(WGRU).

ht = g(Wxt + Uωht−1 + b) (2)

Figure 1: Configuration of the recurrent links between RNN cells
according to the weight ω.

The next question that arises is how to set ω. We decided to
set a single value for all the sound types based on the localization
performance measured on a held-out validation subset. A weight of

ω = 1 corresponds to a standard GRU. A lower weight is expected
to be more adapted for events of short duration.

The use of different weights does not require to retrain a model.
We simply replace the GRU layer by a WGRU at inference time.
Thus, we perform two forward passes with a single model: one with
GRU for classification, one with WGRU for localization. Finally,
we are able to produce temporal predictions with different weights,
and eventually combine them to improve the localization.

3. MULTI-INSTANCE LEARNING

Another approach is related to the Multi-Instance Learning (MIL)
paradigm [17], which handles cases with weak labels. In our case,
we need to make predictions at frame-level, whereas the reference
tags are at file-level. When a recording is labeled with the Cat class,
for instance, not all the acoustic frames are positive with respect to
that class. Thus, we are in presence of both positive and negative
instances at frame-level. A straightforward but suboptimal solution
is the so-called ”false strong labeling”, in which we consider that
all the frames are positive for a given class. MIL consists instead
of considering that at least one instance is positive, i.e. the highest
score should be equal to the weak label, as written in the following
relation for the ith instance: maxj ŷikj = yik, where ŷikj and yik
are the prediction for frame j and class k and the reference tag for
class k, respectively.

There are drawbacks to this approach. For instance, the training
of the model will focus only on the highest scored frame and ignore
the other ones. To remedy to this issue, Morfi and Stowell [14] pro-
posed a loss function that takes into account frames with the lowest
prediction scores, which should tend towards zero, and also a naı̈ve
assumption that in general a specific event will be present in half of
the frames. They applied this idea successfully on a binary classi-
fication problem, namely the presence/absence of singing birds in
audio recordings. For the need of the present challenge, we gener-
alized their loss function to K > 2 classes, as written in equation 3,
where binCE stands for the binary cross-entropy loss. In our exper-
iments, a first network is used to identify which classes should be
considered for localization by a second network trained to minimize
the MIL loss function.

loss =

K∑
k=1

binCE(yik,max
j

ŷikj)+

binCE(yik/2,mean
j

ŷikj) + binCE(0,min
j

ŷikj)

(3)

4. EXPERIMENTAL SETUP

4.1. Audio material

The DCASE 2018 Task 4 is related to discovering audio events
from a set of 10 sound categories occurring in domestic envi-
ronments, namely Speech, Dog, Cat, Alarm/Bell ringing, Dishes,
Frying, Blender, Running water, Vacuum cleaner, and Electric
shaver/toothbrush. All the files are 10-second clips extracted from
Youtube user videos and are part of the Audioset corpus [2]. The
recordings most often contain several overlapping event categories.

The challenge corpus is divided into three subsets: the training,
test and evaluation subsets. Three different splits of training data
were provided: a labeled, an unlabeled in domain and an unlabeled
out of domain training sets. In our work, we only used the labeled
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subset to train our models, and, in the case of GRU-WGRU only,
we also tried to extend it by using pseudo-labels made on the unla-
beled in domain subsets. The labeled training subset is comprised
of 1578 clips (2244 class occurrences) for which weak annotations
have been verified and cross-checked.

The test subset is comprised of 288 files for which we were
provided with strong labels. We will thus report performance re-
sults on this subset. The results obtained on the evaluation subset,
comprised of 880 files, are not available.

4.2. Audio features

For both approaches, only the labeled (weak labels) and the unla-
beled in-domain subsets were used. We used the first one to train a
classifier (for both WGRU & MIL), and also to add weak annota-
tions to the unlabeled in domain subset. Finally, both subsets were
used to retrain the model and perform localization. The use of the
unlabeled in-domain subset proved useful for WGRU only, but not
for MIL. More experiments are needed to draw conclusions for this
semi-supervised setting.

As input to the networks, 64 log-Mel filter-bank (F-BANK) co-
efficients were extracted every 23 ms on 100 ms duration frames,
with 20 Hz and 11025 Hz as minimum and maximum frequency
values to compute the Mel bands, respectively. Hence, for each 10-
second file, a 431× 64 matrix is extracted. This matrix is used as a
single input image fed to the networks.

Different normalization and features scaling methods were
tested as pre-processing stage such as global mean removal, mean
and variance standardization, but no gains were observed compared
to using raw F-BANK.

4.3. Neural networks

The networks used in our work are very similar to the baseline one
in terms of number and types of layers: three blocks each com-
prised of a convolution (64 3, 3 kernels) layer - batch-normalization
- Rectifier Linear Units (ReLu) as the non-linear activation func-
tion - sub-sampling by max-pooling (2, 4 for the first layer, 1, 4 for
the following blocks) - 2-d Spatial Dropout (dropping factor=20%).
Then follows a bi-directional GRU layer with the tanh activation
function with 64 cells, a time-distributed dense layer with 64 neu-
ron units, a global-average-pooling layer to obtain 10 scores with a
sigmoid function on each of the ten output neurons.

For the MIL approach, the first network used to classify the
sound events at file level did not comprise the GRU layers but in-
stead a dense one with 1024 neurons. The input of this layer was
the concatenation of a 2-d average- and a 2-d max- global pooling.
This network was found to perform better than the recurrent one,
for classification at least. It yielded 85.84% and 82.86% f1 scores
on our training and validation subset (proportion: 80/20 % of the
weakly labeled training set).

Regarding the second network used for localization in the MIL
approach, its architecture is the same as the CRNN one used for
WGRU, except that the last dense layer is a time-distributed dense
layer with ten units. The output of this network for a single record-
ing is of dimension 431×10, 431 being the number of time frames,
and 10 the number of classes. The score curves are then individually
rescaled to the [0, 1] interval. The final event segments are obtained
by first smoothing the score curves with a moving-average filter of
size 19 frames, second by binarizing the curves with a threshold of
0.07. Neighbor segments are merged when separated by less than
200 ms, the tolerance margin used for evaluation.

In all cases, we used the Adam optimizer and a simple learning
rate decay policy: dividing it by two after 30 epochs and 60 epochs.
All the networks were trained on 100 epochs except the MIL local-
ization network trained on 10 epochs only.

4.4. Threshold optimization

We used an ad-hoc threshold optimization algorithm to set the dif-
ferent thresholds on the classes. Our method is used for the clas-
sification (WGRU and MIL) and detection (WGRU only) tasks. It
consists of a genetic algorithm inspired by simulated annealing [18].
With optimizing the threshold modifications, it allows sharp reduc-
tion of the number of combinations and leads quickly to a near op-
timal solution.

5. RESULTS

Approach Baseline WGRU MIL

F-score (%) 14.06 16.77 24.58

Alarm bell ringing 3.9 17.6 28.3
Blender 15.4 11.6 10.1
Cat 0.0 0.0 48.9
Dishes 0.0 0.0 0.0
Dog 0.0 4.8 18.6
Electric shaver toothbrush 32.4 33.3 28.6
Frying 31.0 29.5 26.7
Running water 11.4 7.1 10.3
Speech 0.0 19.4 22.3
Vacuum cleaner 46.5 40.0 52.2

Table 1: Global and class-wise F-measures (F-scores) on the test
subset.

Table 1 shows the performance results on the test subset in
terms of F-measure (F-score) for the baseline and our approaches.
Both WGRU and MIL outperform the 14.06% baseline F-score with
16.34% and 24.58% scores, respectively. MIL behaves better than
GRU-WGRU for all the classes.

Weight(s) F-score (%) ER
Baseline 14.06 1.54

WGRU
1. 6.68 2.55

0.50 4.69 2.92
0.30 8.24 3.18
0.20 11.35 3.37

Combined WGRUs 1. and 0.20 16.77 1.60

Table 2: Performance comparison and impact of the weight used
with WGRU.

We only reported our best results in this table, using classifi-
cation thresholds optimized on our validation subset (20% of the
training data). Classification performance decreases by about 1% in
F-score if using the default 0.5 threshold for all the classes.

5.1. WGRU

5.1.1. Temporal dependency weakening improves localization

Figure 2 gives an example in which the standard CRNN (GRU) does
not allow to localize the sound event Dog that was correctly detected
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for that particular recording. The curves are the output of the last
time-distributed layer of the network, the Green one being the curve
using GRU and the orange one using WGRU. The vertical rectan-
gles denote the ground truth and represent the segments where the
dog should be detected. For GRU, Dog is detected throughout the
whole audio clip. For WGRU, with ω = 0.25, the dog segments are
properly localized based on the curve peaks.

Figure 2: GRU (green) and WGRU (orange) score curves for the
correct class Dog. The vertical rectangles denote the groundtruth
and represent the segments where Dog should be detected. Green
Localization results of the CRNN with GRU. The class dog is de-
tected but in the entire clip. Orange: The prediction of the CRNN
with WGRU with a temporal weight of 0.25. The dog barking seg-
ments are detected and localized properly.

This failure of the standard CRNN may be due to the fact that it
is trained to detect a sound event in 10-s duration recordings, regard-
less of where in the file. Thus, the memory brought by the recurrent
cell states keeps the information that Dog is present as soon as it
is detected in the file, either at the beginning or at the end of the
recording since bi-directional GRU layers are used.

5.1.2. Combination of WGRUs

Table 2 allows to compare the baseline performance of 14.06 in F-
score and 1.54 in Error Rate (ER) to WGRU with different values
of the weighting scalar ω. As one can see, WGRUs alone are worse
than the baseline. The best weighting factor value was found to be
estimated to about 0.20, with a 11.35% F-score. Smaller weight val-
ues revealed less efficient, showing that keeping some information
from the previous hidden cell state is important. The best results,
also reported in Table 1, were obtained by combining two WGRUs
with 1. and 0.20 weights.

The combination of WGRU predictions is subjective and made
after observation using the test dataset. The classes have been
divided into two categories: stationary sounds (Blender, Elec-
tric shaver toothbrush, Running water, Vacuum cleaner) and short
sounds (Alarm bell ringing, Cat, Dog, Speech). The predictions of
the WGRU weighted at 1 are kept for the stationary sounds and the
predictions of the WGRU weighted at 0.20 for the short sounds.

5.2. MIL

Figure 3 shows a successful example of the MIL model for a test file
that contains speech and dog barking in segments given below the
spectrogram. The first classification CNN correctly identified these
two classes at file level, and the second MIL-CNN provides the two
peaky curves, blue for Speech, red for Dog.

As shown in Table 1, MIL outperformed the baseline by a large
margin for about haf of the classes and especially for Cat with a

Figure 3: Score curves by MIL for the two correctly detected classes
’Speech’ (Blue) and ’Dog’ (Red). Below the spectrogram is repre-
sented the groundtruth.

48.9% F-score. For the other classes, its performance is lower but
close. It is remarkable that all approaches failed for Dishes.

By observing the localization predictions, it appears that the
MIL model confuses Dishes and Frying. In the training subset,
about 46% of the Dishes samples also contain Frying. There are
even more files with Dishes and Speech, namely 52%, and 32%
with the three classes together. Dishes is not confounded that much
with Speech probably because there are many more Speech files
than Dishes files: 550 versus 184 files.

6. CONCLUSION

In this paper, we reported experiments in the framework of the task
four of the DCASE 2018 challenge. We had a two-fold objective of
first, detecting sound events globally in audio recordings, second,
localizing as precisely as possible where the detected event cate-
gories occur in time. We trained our models on weakly annotated
dataset. The weak annotations provide tags from audio event but
does not provide their temporal boundaries.

We explored two new approaches: 1) a ”weighted-GRU” one
(WGRU), in which we train a Convolutional Recurrent Neural Net-
work for classification and then exploit its frame-based predictions
at the output of the time-distributed dense layer to perform local-
ization. We propose to lower the influence of the hidden states
to avoid predicting a same score throughout a recording ; 2) An
approach inspired by Multi-Instance Learning (MIL), in which we
train a CNN to give predictions at frame-level, using a custom loss
function based on the weak label and statistics of the frame-based
predictions. Both approaches outperform the baseline of 14.06% in
F-measure by a large margin, respectively 16.34% and 24.58% for
combined WGRUs and MIL, on a test set comprised of 288 files.

Limitations of our best approach, MIL, were described. In par-
ticular, when two classes of sound events occur very often together,
such as Dishes and Frying, MIL fails to learn how to distinguish
between them. Our next step will be to modify the MIL loss func-
tion to penalize the fact that the prediction outputs for two different
classes are too similar. Another improvement would be to achieve
the same performance but using a single neural network rather than
two.
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