
Detection and Classification of Acoustic Scenes and Events 2018 Challenge

CONVOLUTIONAL RECURRENT NEURAL NETWORK FOR AUDIO EVENTS
CLASSIFICATION

Technical Report

Federico Colangelo, Federica Battisti, Alessandro Neri, Marco Carli

Department of Engineering, Via Vito Volterra, 62
00146 Rome, Italy

federico.colangelo, federica.battisti, alessandro.neri, marco.carli@uniroma3.it

ABSTRACT

Audio event recognition is becoming a hot topic both in the research
and in the industrial field. Nowadays, thanks to the availability of
cheap sensors, the acquisition of high-quality audio is much easier.
However, new challenges arise: the large number of inputs requires
adequate means for coding, transmitting, and storing the recorded
data. Moreover, to build systems that can act based on their sur-
roundings (e.g. autonomous cars), automatic tools for detecting
specific audio events are needed. In this paper, the effectiveness
of an architecture based on a combination of convolutional and re-
current neural networks for general purpose audio event detection is
evaluated. Specifically, the architecture is evaluated in the context
of the DCASE challenge on general purpose audio tagging, in order
to provide a clear comparison with architectures based on different
principles.

Index Terms— Audio event recognition, deep neural network,
audio classification

1. GENERAL DESIGN PRINCIPLES

The first step in the design of a Deep Neural Networks (DNN)-
based audio classifier is the choice of the type of input used for
training the system (e.g., time or frequency domain, Mel-Frequency
Cepstral Coefficients (MFCC) coefficients, etc.). The purpose of
using transformed domains/features is to reduce the dimensionality
of the input while retaining as much information as possible, due
to the fact that larger input sizes result in more parameters and thus
is exponentially more complex optimization problems that must be
solved to train the system (i.e., curse of dimensionality).

When dealing with audio signal, the frequency domain is usu-
ally preferred. As shown in [1], improved performances are ob-
tained by training DNN models in the frequency domain. More
specifically, the Short-Time Fourier Transform (STFT) of the input
signal is calculated to account for the non-stationary frequency con-
tent of audio signals. The STFT is typically computed on overlap-
ping frames, in order to avoid introducing artifacts. Nevertheless,
while large overlaps are often used in spectral audio processing (es-
pecially when high fidelity is needed), smaller overlaps often result
in better classification performances, since the STFT size is reduced
and thus the model is trained on smaller inputs. To further reduce
the classifier input size, Mel coefficients, computed from the power
spectrogram of the input, can be exploited. Mel filters have been
extensively used in speech recognition, since they offer better fre-
quency resolutions (i.e. shorter triangle bases) at low frequency

values. Despite the loss of frequency information, the simplifica-
tion of the optimization problem and the improved performances
have made Mel coefficients one of the most used approach in audio
machine learning.

The temporal dimension of the input also needs to be carefully
addressed. Audio events have a strong inter-class variability in the
temporal support. Furthermore, publicly available dataset are usu-
ally composed of noisy recordings that do not start and stop with
the event. To cope with this issue, the input can be padded to match
the length of the longest sample. However, this approach becomes
unfeasible when the variance of the sample length is high, as the
classifier is forced to learn parameters tuned for input of different
effective length.

A different approach is to train the classifier with slices ex-
tracted from the input sequence, under the hypothesis that the se-
lected slice length contains enough information to discriminate be-
tween the classes. Reducing the input size also has a positive effect
on the complexity of the optimization problem. Moreover, this ap-
proach is better suited for systems operating in the wild. In fact, in
this way there is no need to perform a detection step before the clas-
sification, and the system should be more resilient to cases where
only a portion of the input signal is recorded.

The patches extracted from a Mel spectrogram can be used to
train a machine learning model. DNNs, both convolutional and re-
current [2], have shown to outperform state-of-the-art methods in
classification tasks for audio signals. Each model offers a differ-
ent advantage: Convolutional Neural Networks (CNN)s have very
good performances with high-dimensional data that are invariant to
translation.

Specifically, the output of a convolutional layer is obtained by
convolving c filters (convolution kernels) with the input, obtaining
a feature map with c channels, thus detecting the pattern associ-
ated with a single filter independently of their position in the signal.
A Mel spectrogram can still be considered invariant to translation
in the time dimension. On the other hand, Recurrent Neural Net-
works (RNN)s are well-suited to deal with sequential data, since
long sequences can be processed step-by-step with a limited mem-
ory of previous sequence elements.

In this contribution, a Long Short-Term Memory (LSTM) ap-
proach is used. LSTM are RNN models optimized to learn long-
range patterns by means of the additional parameters controlling
the memory of the model. The structure of a LSTM unit is shown in
Figure 1. Basically, to deal with the vanishing/exploding gradient
problem, in a LSTM cell an additional parameter (the cell state Ct)
is used. Each unit in the cell generates an output and an update for



Detection and Classification of Acoustic Scenes and Events 2018 Challenge

Figure 1: Architecture of an LSTM unit

Ct based on its current input and on the learned parameters. In the
following, W,U, b represent the learned parameters of the LSTM
cell, while the subscripts indicate the gate to which they belong.
The amount of information that is kept from the previous cell state
Ct−1 (i.e. past inputs), is modulated by ft, an integer in the [0 1]
range computed as follows:

ft = σ(Wfxt + Ufht−1 + bf ) (1)

where xt is the current input, ht−1 represents the previous unit out-
put, and σ is the sigmoid function.
The part of the current input that is memorized in the cell state is
computed by the Contribution Selection block and the input gate.
More specifically, the Contribution Selection block computes the
information to be added to Ct, Cup

t by means of:

Cup
t = tanh(Wcxt + Ucht−1 + bc),

while the input gate computes it, an integer in the range [0 1], that is
used to modulate the contribution of Cup

t to Ct and that is calculated
as:

it = σ(Wixt + Uiht−1 + bi), (2)

where Ct is updated by means of Equation 3:

Ct = ftCt−1 + itCup
t . (3)

Finally, the output of the unit, ht, is calculated with the following
equation:

ht = ot ◦ tanh(Ct) (4)

where ot is a scalar in the range [0, 1] given by the Output Gate:

ot = σ(Woxt + Uoht−1 + bo). (5)

Since CNN and RNN present complementary advantages, it is
possible to combine them, as done in [3], by exploiting convolu-
tional layers as feature extractors and by using the output for train-
ing a LSTM. Given this principle, the convolutional layers should
be used to learn features in the frequency axis while maintaining
unaltered the temporal dimension of the data.

Finally, in the case of many modern machine learning datasets,
the dataset can contain data with a noisy ground-truth. In order to
deal with this issue, label smoothing is used. Label smoothing is a
regularization technique used to prevent a machine learning model
from becoming too confident in its prediction (i.e. having an output
that is sparse). In practice, label smoothing consists in applying the
following transformation to the one-hot encoded label, δn [4]:

y′(n) = (1− l)δn +
l

Nc
(6)

Type Patch size Dilation
factor Output channels

Convolutional 7x7 1 128
Max pooling 2x2 - -

Convolutional 5x5 2 128
Max pooling 2x1 - -

Convolutional 5x5 2 256
Max pooling 2x1 - -

Convolutional 3x3 2 256
Max pooling 2x1 - -

Convolutional 1x1 1 64
Max pooling 2x1 - -

Table 1: Parameters of the convolutional layers

where n is the class index, Nc is the number of classes and l is the
smoothing factor.

2. ARCHITECTURE DETAILS

The training set is processed by extracting the STFT of each au-
dio sample. A Mel filter-bank, composed of 128 triangular filters,
is applied to the power spectrogram computed from the STFT and
the logarithm function is applied to the coefficients. The number
of filters is selected based on [5, 3]. The model is trained by ex-
tracting patches of 128 temporal steps from the Mel spectrogram,
with the starting index randomly selected. Audio samples leading
to shorter Mel spectrograms are zero-padded to match the minimum
time length.

The neural network is composed of a stack of convolutional
layer connected to a LSTM. The model has 5 convolutional layers,
whose parameters are shown in Table 1. Batch normalization [6] is
applied to the output of each layer. Dilated convolutions are used
in the middle convolutional layers to exploit the benefits of a larger
filter-size while keeping limited the number of parameters [7].
The main peculiarities of the convolutional layers are the asymmet-

ric Max pooling and the reduction of the number of output channels
in the last layer. Max pooling is mostly used across the frequency
dimension for preserving the temporal structure.
The purpose of the last convolutional layer is to reduce the dimen-
sionality of the LSTM input. To this aim, 1x1 convolutions are used,
as suggested in [8]. In this way, the dimensionality is reduced while
retaining only the most useful information from the 256 channels.
The final state of the LSTM cell is connected to a feed-forward
layer composed of Nc units, Nc being the number of classes in the
dataset.
The model is trained by means of the RMSProp algorithm [9], with
initial learning rate equal to 0.001. The learning rate is decreased
by a factor of 0.5 if there is no improvement in the validation set
loss for more than 10 epochs. An initial batch size of 50 is used for
training the model. The batch size is then halved after the 100th and
130th epoch. Cross-entropy is used as loss function.
To deal with labels that have not been manually verified (noisy),
two smoothing constants are used: a smaller smoothing factor, l1
for data with reliable ground truth and a larger factor l2 for data
with noisy ground truth. A smoothing factor l2 of 0.1 is used for
samples with noisy ground-truth while the verified labels are not
smoothed (l1 = 0).
The model is regularized by applying dropout after each convolu-
tional layer with a probability of keeping the activation of 0,2 and by



Detection and Classification of Acoustic Scenes and Events 2018 Challenge

adding the L2 norm of the model parameters is to the cost function
a factor of 0.002.

3. EXPERIMENTAL TESTS

3.1. Dataset

The proposed model has been trained on the DCASE 2018 task 2
dataset [10]. The dataset contains 18873 audio files taken from the
Freesound archive [11], a crowd-sourced audio library. Audio files
are encoded as mono PCM audio files, with a sampling frequency
of 44.1 kHz. The length of the events is heterogeneous, ranging
from below one to more than 30 seconds. Each file belongs to one
over 41 classes. The label ontology is a sub-set of the one defined
in [12].

The files are divided into a training and a test set. The train-
ing set is composed of 9474 audio samples, for which the ground-
truth is provided. However, only about one third of the training
set ground-truth has been manually verified, while the remaining
data is estimated to be annotated with 70% correctness. 1427 sam-
ples from the training dataset are used as a validation set to perform
hyper-parameters optimization.

3.2. Experimental results

The assignment of a label during the testing phase is performed as
follows: the sample is transformed according to the procedure de-
scribed in the Section 2. Every slice extracted from the same audio
event is processed. The label for a single event is given by the sum
of the model output over all the slices extracted. The performances
of the model are evaluated by means of the accuracy and the Mean
Average Precision (MAP)@3 scores. The MAP@N is given by:

MAP@N =
1

Ns

Ns∑
ns

N∑
k

P (k)

where Ns is the number of evaluated samples and P (k) is the pre-
cision at the kth prediction. It is worthful to note that this result is
obtained without cross-validation or model averaging.

In the framework of the challenge, the ground-truth of the test
set is not available. More specifically, the only result that can be
calculated over the test set is the MAP@3 score over 19% of the
test set. In the test phase, the model yields an MAP@3 of 73, thus
showing improved performances with respect to the baseline sys-
tem.
The following results are computed over the validation set. The
model yields an overall validation accuracy of 77,98% and an
MAP@3 score of 82,75 %. Table 2 shows more detailed informa-
tion over the validation results. As can be noticed, the samples that
are predicted with less accuracy belongs to classes that are under-
represented in the dataset, suggesting that a more balanced training
set could yield better performances.

4. CONCLUSIONS

The task of audio event recognition has gained increased relevance
in the last years, thanks to the rapid development of tools based
on the paradigm of DNN that ease this task while increasing its
accuracy. Many models have been introduced and tested on differ-
ent datasets, thus picturing a confusing landscape regarding which
method performs best. In this paper we presented an approach based

Class Accuracy (%) Training samples
(% of training set)

Applause 95 3
Oboe 93,87 3.12

Cowbell 90,47 2.12
Snare drum 90,47 3.22

Shatter 89,28 3.05
Double bass 89,13 3.17

Burping/eructation 88,88 2.29
Violin or fiddle 88,88 3.3
Glockenspiel 86,66 0.99

Fart 86,04 3.21
Trumpet 85,45 3.06

Bark 83,33 2.54
Cough 81,08 2.57
Hi-hat 80,76 3.1

Computer keyboard 80 1.30
Finger snapping 80 1.21
Acoustic guitar 79,48 3.26

Microwave oven 79,16 1.52
Saxophone 79,06 3.21

Keys jangling 78,26 1.45
Bass drum 77,77 2.96

Knock 77,77 2.81
Harmonica 77,14 1.62
Laughter 77,08 3.15

Drawer open or close 76,92 1.65
Gong 76,31 3.17
Flute 74,46 3.16

Fireworks 74,28 3.31
Clarinet 73,17 3.24

Cello 72,91 3.15
Tambourine 72,09 2.22

Meow 68 1.62
Chime 66,66 1.25

Telephone 61,53 1.34
Bus 59,09 1.09

Scissors 57,89 0.95
Writing 57,89 2.90

Gunshot/gunfire 56,25 1.64
Tearing 54,54 3.2
Squeak 54,05 3.29

Electric piano 38,46 1.55

Table 2: Per-class accuracies over the validation set correlated with
the percentage of per-class training set samples

on the combination of CNN and RNN. The obtained results shows
that a simple architecture outperforms the baseline system based
on CNN alone while using a comparably simple approach. In the
future, more experiments will be performed to see if the proposed
model continues to outperform CNN-based methods even when the
pre-processing is optimized.



Detection and Classification of Acoustic Scenes and Events 2018 Challenge

5. REFERENCES

[1] L. Hertel, H. Phan, and A. Mertins, “Comparing time
and frequency domain for audio event recognition using
deep learning,” CoRR, vol. abs/1603.05824, 2016. [Online].
Available: http://arxiv.org/abs/1603.05824

[2] F. Colangelo, F. Battisti, M. Carli, A. Neri, and F. Calabr, “En-
hancing audio surveillance with hierarchical recurrent neural
networks,” in 2017 14th IEEE International Conference on
Advanced Video and Signal Based Surveillance (AVSS), Aug
2017, pp. 1–6.

[3] E. Cakir, G. Parascandolo, T. Heittola, H. Huttunen, and
T. Virtanen, “Convolutional recurrent neural networks for
polyphonic sound event detection,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 25, no. 6,
pp. 1291–1303, June 2017.

[4] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 2818–2826.

[5] J. Salamon and J. P. Bello, “Deep convolutional neural net-
works and data augmentation for environmental sound classi-
fication,” IEEE Signal Processing Letters, vol. 24, no. 3, pp.
279–283, March 2017.

[6] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
CoRR, vol. abs/1502.03167, 2015. [Online]. Available:
http://arxiv.org/abs/1502.03167

[7] F. Yu and V. Koltun, “Multi-scale context aggregation by
dilated convolutions,” CoRR, vol. abs/1511.07122, 2015.
[Online]. Available: http://arxiv.org/abs/1511.07122

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with convolutions,” CoRR, 2014.

[9] T. Tieleman and G. Hinton, “Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural
networks for machine learning,” https://goo.gl/P9g5tc, Last
accessed: July 2018.

[10] E. Fonseca, M. Plakal, F. Font, D. P. W. Ellis, X. Favory,
J. Pons, and X. Serra, “General-purpose tagging of freesound
audio with audioset labels: Task description, dataset,
and baseline,” 2018, submitted to DCASE2018 Workshop.
[Online]. Available: https://arxiv.org/abs/1807.09902

[11] E. Fonseca, J. Pons, X. Favory, F. Font, D. Bogdanov, A. Fer-
raro, S. Oramas, A. Porter, and X. Serra, “Freesound datasets:
a platform for the creation of open audio datasets,” in Proceed-
ings of the 18th International Society for Music Information
Retrieval Conference (ISMIR 2017), 2017, pp. 486–493.

[12] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio
set: An ontology and human-labeled dataset for audio events,”
in Proc. IEEE ICASSP 2017, 2017.


