Detection and Classification of Acoustic Scenes and Events 2018

Challenge

ACOUSTIC SCENE CLASSIFICATION WITH FULLY CONVOLUTIONAL NEURAL
NETWORKS AND I-VECTORS

Technical Report

Matthias Dorfer
Christoph Heindl

Bernhard Lehner
Fabian Paischer

Hamid Eghbal-zadeh
Gerhard Widmer

Institute of Computational Perception (CP-JKU),
Johannes Kepler University Linz, Austria
matthias.dorfer @jku.at

ABSTRACT

This technical report describes the CP-JKU team’s submissions
for Task 1 - Subtask A (Acoustic Scene Classification, ASC) of
the DCASE-2018 challenge. Our approach is still related to the
methodology that achieved ranks 1 and 2 in the 2016 ASC chal-
lenge: a fusion of i-vector modelling using MFCC features derived
from left and right audio channels, and deep convolutional neural
networks (CNNs) trained on spectrograms. However, for our 2018
submission we have put a stronger focus on tuning and pushing the
performance of our CNNs. The result of our experiments is a clas-
sification system that achieves classification accuracies of around
80% on the public Kaggle-Leaderboard.

Index Terms— audio scene classification, convolutional neural
networks, deep learning, i-vectors, late fusion

1. INTRODUCTION

This report describes our submissions for Task 1 (Subtask A)
— Acoustic Scene Classification (ASC) in the DCASE-2018
Challenge[1]'. The basic approach to building our final classifier
is based on the methodology we developed for the DCASE-2016
Challenge, which took first and second rank in 2016 and has been
described in detail in [2]. However, compared to the original ver-
sion of our system we put a stronger focus on tuning our neural
networks for this year’s submission. In Summary, the method com-
bines deep Fully Convolutional Neural Networks (FCNN) trained
on perceptually weighted spectrograms with an i-vector modeling
approach, and fuses these via linear logistic regression.

In the end, we submitted the predictions of four classifiers (see
Section 6 below): (1) a averaged ensemble of CNNs; (2) a cali-
brated ensemble of i-vector-based classifiers; (3) a combination of
i-vector and CNN classifiers obtained by averaging; and, as the
most complex model, (4) an ensemble of i-vector and CNN re-
sults calibrated and fused via linear logistic regression. We es-
timate the performance of our methods on the publicly available
Kaggle-Leaderboard®. The best classifier, when evaluated in this
way, achieves a classification accuracy of 80.00%.

http://dcase.community/challenge2018/
’https://www.kaggle.com/c/dcase2018-taskla—
leaderboard

2. RECAPITULATION: THE DCASE-2016/17
APPROACHES

In DCASE 2016, we proposed a hybrid approach using binaural i-
vectors and CNNs [2]. We adapted the i-vector features for ASC by
1) tuning MFCC features by selecting the best performing window-
ing scheme and cepstral coefficients, 2) extracting i-vectors from
different audio channels (left, right, average and difference) and 3)
combining the i-vector cosine scores of different channels via score
averaging. Our CNN was a VGG-style ConvNet trained on short
segments of spectrograms that made its final decision by combin-
ing the predictions of all the segments from a scene recording. In
the end, linear logistic regression was used to fuse the averaged i-
vector scores with the CNN prediction scores. In classifying the
unseen test data, we combined predictions of the models trained on
each fold in the provided cross validation split.

3. FULLY CONVOLUTIONAL NEURAL NETWORKS

In this section we describe the neural network architectures as well
as the optimization strategies used for training our audio scene clas-
sification networks.

3.1. Network Architecture

Our basic network architecture is depicted in Table 1 (in total we
use three slightly modified versions of this architecture for our sub-
mission). The feature learning part of our model follows, as in our
last years submissions, a VGG style network [3] and the classifi-
cation part of the network is designed as a global average pooling
layer [4] over 10 feature maps (one for each class) followed by a
softmax activation. As an activation function within the network we
use Rectified Linear Units (ReLUs). What is a bit special about our
model in Table 1 is that we replace some of the Dropout-Layers with
Gaussian-Noise-Layers. This helped us to improve the performance
on the provided validation set by a bit less than one percentage point
compared to only using Dropout. This was also reflected when we
checked our performance on the public Kaggle-Leaderboard.

3.2. Data Preparation

For data preprocessing we resample the audio signals to 22050
Hz, and compute a two-channel (left and right) Short Time Fourier
Transform (STFT) using 2048-sample windows and a hop-size of

Detection and Classification of Acoustic Scenes and Events 2018

Table 1: Model Specifications. BN: Batch Normalization, ReLU:
Rectified Linear Unit, CCE: Categorical Cross Entropy. For training
a constant batch size of 100 samples is used.

Input 3 x 256 x 128
5 x 5 Conv(pad-2, stride-2)-42-BN-ReLU
3 x 3 Conv(pad-1, stride-1)-42-BN-ReLU
2 X 2 Max-Pooling + GaussianNoise(1.00)
3 x 3 Conv(pad-1, stride-1)-84-BN-ReLLU
3 x 3 Conv(pad-1, stride-1)-84-BN-ReLU
2 X 2 Max-Pooling + GaussianNoise(0.75)
3 x 3 Conv(pad-1, stride-1)-168-BN-ReLU
Drop-Out(0.3)
3 x 3 Conv(pad-1, stride-1)-168-BN-ReLU
Drop-Out(0.3)
3 x 3 Conv(pad-1, stride-1)-168-BN-ReL.U
Drop-Out(0.3)
3 x 3 Conv(pad-1, stride-1)-168-BN-ReLLU
2 x 2 Max-Pooling + GaussianNoise(0.75)
3 x 3 Conv(pad-0, stride-1)-336-BN-ELU
Drop-Out(0.5)
1 x 1 Conv(pad-0, stride-1)-336-BN-ELU
Drop-Out(0.5)
1 x 1 Conv(pad-0, stride-1)-10-BN
GaussianNoise(0.3)
Global-Average-Pooling

10-way Soft-Max

250

200

-
1%
=}

-4

256 bins

=
o
S

0 50 100 150 200 250
431 frames

300 350 400

Figure 1: Left channel of perceptually weighted mel-spectrogram
used for our classification networks.

512 samples. Given this raw spectrogram, we apply a perceptual
weighting to the individual frequency bands of the power spectro-
gram [5]°. As a last step, we apply a mel-scaled filterbank yielding
431-frame spectrograms with 256 frequency bins per data point.
Figure 1 shows one channel of such a spectrogram. Before present-
ing this data to our networks we compute the difference between the
left and the right channel and concatenate it as a third input feature
map with the original two channel spectrogram. All three channels
are mean centered and normalized to have standard deviation one
along the individual frequency bins.

3librosa.core .perceptual_weighting

Challenge

100+

(o]
o
1

Accuracy
()}
o

40 —— FCNN_SPL1 tr
—— FCNN_SPL1 va

T T T

0 20 40 60 80 100
Epoch

Figure 2: Training and validation accuracy on the provided evalua-
tion split setup.

3.3. Training Procedure

At training time we show the network only randomly selected 128
frame excerpts of the full spectrograms, while presenting the whole
spectrogram during testing. This is technically possible as our net-
work is fully convolutional and can therefore processes audio ex-
cerpts of varying length. Intuitively presenting shorter excerpts for
training should weaken the effect over-fitting to the individual train-
ing examples as we end up with a much larger amount of shorter
sub-excerpts. To further prevent over-fitting we also apply mixup-
data augmentation [6] with an alpha of 0.2.

As optimizer we use the ADAM update rule [7] with an initial
learning rate of 0.001 and a mini-batch size of 100 samples. Each
model is trained for 120 epochs where we linearly decay the learn-
ing rate to zero starting from epoch 25. Figure 2 shows the evolu-
tion of training and validation accuracy on the predefined evaluation
split. We re-train the model four times using different random seeds
and show mean and standard deviation to get a reliable estimate of
the model’s behavior. Note that the validation accuracy does not
decrease towards the end of the full training time. Having a fixed
learning rate schedule and this model behavior on the validation set
enables us to make use of the full training data for our final mod-
els. Therefore we randomly re-split the entire development data set
into four distinct folds and retrain our networks. Figure 3 shows
the performance of the same model as in Figure 2 trained on the
alternative split of the data (mean and standard deviation of the four
folds). We observe that the model achieves a much high classifi-
cation accuracy also on the validation set. This becomes obvious
when we keep in mind that the recording locations are now repre-
sented in both the training and the validation set. However, as the
model’s performance does not degrade on the validation set while
training we expected that it should still perform well on unseen lo-
cations. A submission to the public Kaggle-Leaderboard confirmed
this with an average accuracy close to 80%.

4. THE I-VECTOR METHOD

In this section we describe the i-vector method and the features we
use for it.

Detection and Classification of Acoustic Scenes and Events 2018

100+

(o]
o
1

Accuracy
(e)]
o

409/ — FCNN_SPL2_tr
—— FCNN_SPL2_va

T T T T

0 20 40 60 80 100
Epoch

Figure 3: Training and validation accuracy on a random data split.

4.1. Features: MFCCs

We extract the features the same way as in our previous work [8].
We suggest to use 23 MFCCs (without 0" MFCC) extracted by ap-
plying a 20 ms observation window without any overlap. 18 MFCC
deltas (including the 0" MFCC delta), and 20 MECC double deltas
(including the 0** MFCC double delta) are extracted by applying a
60 ms observation window, placed symmetrically around a 20 ms
frame. Regardless of the observation window length, we use 30 tri-
angle shaped mel-scaled filters in the range [0-11 kHz]. Our feature
vector has therefore a dimensionality of 61.

Since the audio recordings are rather short, which is problem-
atic in general and a particular problem for i-vector modelling ap-
proaches [9], we suggest to augment the data for training and test-
ing. We extract MFCCs from left and right channels, and concate-
nate the resulting features into a single feature matrix with twice the
length in time. Additionally, we extract MFCCs from pitch shifted
audio recordings up and down by 100, 200, and 300 cents, respec-
tively.

As a consequence, we end up with a feature matrix that has
the same size as the feature matrix extracted from a 140 s audio
recording (10 s * 2 (left/right) * 7 (original + shifted); 61 features *
7000 observations) for every audio recording.

4.2. I-vector Backend

In principle, we use the same i-vector extraction pipeline, and the
same post-processing of the results as in [2]. A Universal Back-
ground Model (UBM) is first trained on the MFCCs from the train-
ing set. This UBM is then used to learn the i-vector space known as
Total Variability Space (TVS). Using UBM and TVS, i-vectors are
extracted from the training and test set. The i-vectors are normal-
ized to norm 1 and a Linear Discriminant Analysis (LDA) is learned
using the i-vectors of the training set. All the i-vectors are then
projected into LDA space. As a next step, a Within-Class Covari-
ance Normalization (WCCN) [10] is learned from these projected
i-vectors. Again, all the i-vectors, which previously were projected
using LDA, are further projected via WCCN. From each class, all
its projected i-vectors are averaged into one i-vector which is used
as the representative of the class for the scoring step. Projected i-
vectors from the test set are then scored using a cosine scoring and

Challenge

the class-averaged i-vectors. The class with the maximum score is
selected as the label for each test i-vector.

5. SCORE CALIBRATION AND LATE FUSION

As outlined above, we train one i-vector-based model and three dif-
ferent CNNs for each fold. This results in 4 models per fold. We
then follow a two-stage fusion and calibration procedure to obtain
the test results: first, we calibrate and fuse the models fold-wise.
Then, we average the predictions of the fold-wise fused models.
Figure 5 shows an overview of our approaches.

We calibrate the prediction scores and fuse the predictions of
the individual models using linear logistic regression. In particular,
for each fusion, we train classifier weights W and class biases b
using the validation set', and compute the fused prediction y =
o (XW + b), where o is the softmax function, and X are the class
probabilities given by each classifier. As shown in Figure 5, we use
this approach for submissions IVEC b, and Allcain; for CNNay,,
we use plain averaging of the individual models across all folds
instead.

6. RESULTS

In the following we list our submitted systems and their respective
performances on the public Kaggle-Leaderboard and the final eval-
uation set.

6.1. Submissions

We provide four different submissions based on the methods de-
scribed in the previous sections:

1. CNNgy: Averaging of all CNN models
2. IVEC.ib: Late calibrated fusion of all Binaural I-vectors

3. Allcaiib-avg: Late calibrated fusion of averaged CNN models
and averaged Binaural I-vectors

4. Allcaivbsep: Late calibrated fusion of all CNN models and all
Binaural I-vectors

As a final prediction for the unseen test set we submit for each sys-
tem the averaged predictions over all four folds.

6.2. Performance on the Public Kaggle-Leaderboard

Table 2 summarizes the results of our submissions on the public
Kaggle-Leaderboard. Our neural network ensemble achieves 80%
on the public leaderboard. In contrast, the calibrated fusion of the
i-vector system achieves 65.8%. What is surprising is that when
combining our best FCNN system with the i-vector system® using
late fusion we are still able to improve by 0.5% resulting in our best
submission at 80.5% .

6.3. Performance on the evaluation set

Will be completed when the official results are released ...

4Ideally, we would use a dedicated calibration set to reduce the risk of
over-fitting.

SNote that our i-vector system is identical to our last year’s submission
and was not tuned to this years challenge and data.

Detection and Classification of Acoustic Scenes and Events 2018

Averaging of Calibrated fusion of

Calibrated fusion of

Challenge

Averaging fusion of

CNNs i-vectors i-vectors and CNNs predictions on the four folds
CNNs |-Vectors CNNs I-Vectors predictions | |predictions | |predictions | |predictions
CNN -1 run -1 CNN -1 fold-1 fold-2 fold-3 fold-4
e Fainis
i3 i3]
N
| | I ¢
1 . .
calib calib submission
i | predictions
predictions predictions predictions
fold-k fold-k fold-k

Figure 4: Overview of fusion schemes used for our submissions.

Table 2: Audio scene classification accuracy on the public Kaggle-
Leaderboard.
CNNavg IVECcalib Allcalib-avg Allcalib»sep
(%) 80.00 65.83 80.50 -

7. CONCLUSION

This short report describes our DCASE-2018 ASC approach for
Subtask A of Task 1. It is a combination of three different FCNN
trained on perceptually weighted spectrograms and an i-vector sys-
tem based on MFCCs. An ensemble of three different FCNNs was
able to achieve a competitive Kaggle- Leaderboard performance of
80%. When fusing this neural network system with our i-vectors
we were able to achieve our best performance of 80.5%.

8. ACKNOWLEDGMENTS

This work was partly supported by the Austrian Ministry for Trans-
port, Innovation and Technology, the Ministry of Science, Research
and Economy, and the Province of Upper Austria in the frame of
the COMET center SCCH.

9. REFERENCES

[1] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-device
dataset for urban acoustic scene classification,” 2018,
submitted to DCASE2018 Workshop. [Online]. Available:
https://arxiv.org/abs/1807.09840

[2] H.Eghbal-Zadeh, B. Lehner, M. Dorfer, and G. Widmer, “Cp-
jku submissions for dcase-2016: A hybrid approach using bin-
aural i-vectors and deep convolutional neural networks,” IEEE
AASP Challenge on Detection and Classification of Acoustic
Scenes and Events (DCASE), 2016.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[4] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv
preprint arXiv:1312.4400, 2013.

[5] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “librosa: Audio and music sig-
nal analysis in python,” in Proceedings of the 14th python in
science conference, 2015, pp. 18-25.

[6] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

[7]1 D. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[8] H. Eghbal-zadeh, B. Lehner, M. Dorfer, and G. Widmer, “A
hybrid approach with multi-channel i-vectors and convolu-
tional neural networks for acoustic scene classification,” arXiv
preprint arXiv:1706.06525, 2017.

[9] A. Kanagasundaram, R. Vogt, D. B. Dean, S. Sridharan, and
M. W. Mason, “I-vector based speaker recognition on short ut-
terances,” in Proc. of the 12th Annual Conference of the Inter-
national Speech Communication Association. International
Speech Communication Association (ISCA), 2011.

[10] A. O. Hatch, S. S. Kajarekar, and A. Stolcke, “Within-class
covariance normalization for svm-based speaker recognition.”
in INTERSPEECH, 2006.

