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ABSTRACT

A system for the automatic classification of acoustic sceses
proposed that uses the stereophonic signal captured byaa-bin
ral microphone. This system uses one channel for calcglatia
spectral distribution of energy across auditory-releviaatjuency
bands. It further obtains some descriptors of the envelopeufa-
tion spectrum (EMS) by applying the discrete cosine tramsftmo
the logarithm of the EMS. The availability of the two-chahbe
naural recordings is used for representing the spatiailuligion of
acoustic sources by means of position-pitch maps. These arap
further parametrized using the two-dimensional Fouri@ngform.
These three types of features (energy spectrum, EMS antiqoesi
pitch maps) are used as inputs for a standard multilayeepéen
with two hidden layers.

Index Terms— Acoustic scene classification, modulation
spectrum, position-pitch map, multilayer perceptron

1. INTRODUCTION

The automatic classification of acoustic scenes, or compate
acoustic scene recognition (CASR) [1] aims at recognidiegcon-
text in which a given acoustic signal is produced. While ligeoti-

ves are different from those of computerised auditory seeiadysis

(CASA), both CASR and CASA share some common challenges

and can thus be considered close to one another [2].

A significant portion of computerised acoustic scene rezogn
tion (CASR) system proposals are based on parametrisatit s
mes which describe the signal in either spectral or cepdbai-
ains [3]. Consistently with typical approached for modwglithe
peripheral auditory system in computerised auditory seceradysis
(CASA) [4], all the cited proposals include spectral anafysvith
greater bandwidths for higher frequencies. While the tenalpdi-
mension of perceived signals seems to be key for percepdibn [
only some of the previous works included modelling of the tem
poral evolution of the parameters in the set of proposedifeat
Alternative options for considering the temporal dimensio the
classification scheme imply designing classifiers with twagying
outputs such as recurrent, convolutional or time-delayralenet-
works [3].

In other applications of acoustic signal processing, sueh a
speaker recognition, the temporal dimension is modelleadly

*This work has been partially funded by the Spanish MinistyEco-
nomy and Competitiveness through project grant MAT2015384C4-3-R.

culating frame-to-frame variations of parameters [5], shecalled

A (short for F* derivative) andAA (2*¢ derivative) parameters.
However, these are of limited value in the case of sound edent
tection, sinceA A parameters added no significant improvement to
the results in [6]. The problem of CASR is closely relatedhe t
problem of sound event detection [1]; therefore, this laditnfor-
mative value of fast variations in parameter values is toxpeeted
also in CASR.

From another point of view, the availability of binaural astic
signals can lead to relevant improvements in CASR systepesj-s
ally if the spatial information present in these two-chdraignals is
exploited, instead of simply processing each channel ieiégntly
and subsequently aggregating parameters into a singleréeatc-
tor [7].

In this paper, we propose a system for the classificationaf-ac
stic scenes based on features obtained from the envelopelanod
tion spectrum (EMS) [8] calculated using a gammatone fhigmk
[9]. This EMS is calculated from one of the available audiarch
nels, while the spatial information conveyed by the binbsignal
is modelled by the position-pitch plane obtained after thess-
correlation function of the two channels [10]. These feaduare
used as inputs for a simple multilayer perceptron (MLP) veitiy
two hidden layers and as masgftmaxoutputs as classes of acou-
stic scenes to be recognised [11].

2. MATERIALS

Audio recordings correspond to the TUT Urban Acoustic Ssene
2018 dataset [12]. This dataset consists of recordingsucegpat
distinct locations and split into 10-second segments. Turatibn

of recordings ranged from 5 to 6 min. A Zoom F8 multitrack re-
corder and a Soundman OKM Il Klassik/studio A3 binaural mi-
crophone were used for recording, hence producing a steoadp
signal. The microphone response can be considered flat &etwe
20 Hz and 20 kHz. Recordings were captured with sampling rate
equal to 48 kHz and 24 quantization bits. Each recordingtioea
corresponded to one of the classes listed in Tab. 1.

3. SIGNAL ANALYSIS

The two audio channels comprising each recoding were fiegirpr
cessed to remove their mean values. Their combined meanesqua
value was subsequently normalised. Normalisation waspesd
by the same factor in both channels so as to preserve the&ik lev
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Class name
Airport
Indoor shopping mall
Underground station
Pedestrian street
Public square
Street with medium level of traffig
Travelling by tram
Travelling by bus
Travelling by underground
Urban park

Boo~NouswNPR#

Table 1: Classes of acoustic scenes: 3 vehicle, 4 indoortddou
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Figure 1: Frequency responses of the filters in the filtekhaith
central frequencies up to 3.5 kHz (25 filters).

differences, that is, the root mean square value of all sasriptlu-
ded in both channels was computed for normalisation. Afhets,
each channel was split in frames with duration 0.5 seconad, a
50% overlap between consecutive frames.
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Figure 2: Logarithm of the LTAS (top) and map of modulatioren
gies (bottom) of a sample 0.5 s audio frame.

sents the average energy at the output of each gammatongd.glte
the long-term average spectrum (LTAS) of the audio frame rEx
maining 8 columns represent the energies of amplitude ratidnk
between 0 and 3 Hz, between 3 and 6 Hz, etc. Figure 2 depicts the
LTAS (top) and the modulation energies (bottom) correspuntb
a 0.5 s frame in an underground station.

The signal analysis scheme described so far transforms one
channel of the audio recorded during 0.5 seconds into arkea@e-
tor of 40 x 9 = 360 components. The dimensionality of this feature
space was reduced as follows. As stated before, the firstncoin
the EMS (see Fig. 2) corresponds to the average energy at each
frequency band. This is relevant for discriminating amoagain
types of acoustic events [6], so the corresponding 40 vétwesach
EMS were kept unchanged. Only a logarithm operation wasexppl

Each frame in the left channel was processed by a filter-bankin order to reduce the skewness of their distribution. Sirhjlto

consisting of 40 gammatone filters [9] with central frequeacan-
ging from 27.5 Hz to 17.09 kHz. The central frequencies of the
filter-bank were chosen so that the pass-bands of contidilters
were adjacent but not overlapping, i.e. the upper cut-effjdiency

of one filter was the same as the lower cut-off frequency ofithe.
Figure 1 illustrates the frequency responses for the fitst il

In CASA systems, the filter-bank modelling the cochlear fre-
quency behaviour is followed by a non-linear model of nelgona-
nical transduction [13]. This non-linear system approxehaper-
forms compression of the higher signal peaks and half-wes#fir
cation [14]. As this produces a too detailed set of signals,usual
to apply low-pass filtering and decimation afterwards [4heTm-
plementation of this model is computationally expensive tuits
non-linearities. For this reason, we substitute it by flve rectifi-
cation followed by a §' order Butterworth low-pass filter with cut-
off frequency equal to 80 Hz and decimation to yield a sangplin
frequency equal to 200 Hz.

Each resulting frame is further processed by computingists d
crete Fourier transform (DFT). The EMS [8] is obtained bykiag
the square modulus of the DFT corresponding to the 40 ganm@ato
filters. In order to reduce the dimensionality of the EMS citsn-
ponents corresponding to the fastest variations of theakigere
discarded. Specifically, a threshold of 24 Hz was set for tbdum
lation frequency. Therefore, each signal frame was reptedeby
a matrix, i.e. EMS, of 489 elements. The first data column repre-

the approach in [15], the remaining 8 columns of each EMS were
processed as if they were a grey-scale image. Specifidadiyo-
dimensional discrete cosine transform (DCT) [16] of thealdhm
of the EMS was calculated, and the block corresponding tdirtste
8 x 8 DCT coefficients was chosen as a lower-dimensional repre-
sentation of each0 x 8 EMS. Therefore, after this dimensionality
reduction, each audio frame of duration 0.5 s was repregdmta
feature vector with{40 + 64) - 2 = 104 components.

The spatial information provided by the 2-channel recaydin
was represented by generating the position-pitch pap f) defi-
ned as [10]:

1 K

T2K+1 k;k B

% cos <p> Q)

(e, f) <7fE +

f

where ¢ (azimut - rad) andf (frequency - Hz) are the indepen-
dent variables of the mag;. (1) is the estimated cross-correlation
between left and right channels at time fagfs is the sampling fre-
quency (48 kHz)d is the interaural distance (estimated to be 14 cm
for this experiment)¢ is the phase speed of sound (estimated to be
343 m/s for this experiment), and is the largest possible integer
given the maximum time lag for which Ry, (7) has been estimated
(7 < 100 ms in our case).

The position-pitch map was calculated for each 0.5 s audio
frame for —m < ¢ < 7 with a resolution of& rad, and for
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Azimut (rad)

Figure 3: Position-pitch map of corresponding to a sampes0.
audio frame.

20 < f < 2000 with a resolution ofl0 Hz. This produced a
120 x 199 map with shifts in thep dependent on the orientation
of the head-mounted microphone system. For illustratiompg@u
ses, Fig. 3 depicts the position-pitch map correspondirgQdb s
frame in an underground station. In order to reduce the numwibe
dimensions, a bidimensional discrete Fourier transforb QFT)
was calculated, and only th#® x 20 elements corresponding to
the lowest spatial frequencies were taken as input feaforethe
acoustic scene classifier. Furthermore, in order to makedna-
meters orientation-independent, only the modulus of theDFETY
was considered.

4. CLASSIFICATION

The afore-mentioned feature vectors were used as inpugsrfar-
tilayer perceptron (MLP) two hidden layers. The first hiddieyer
comprised 24 neurons. The first 4 neurons were connected #th
inputs corresponding to the LTAS of each frame, a secondpgobu
8 neurons were connected to thex 8 DCT coefficients represen-
ting the EMS, and the remaining 12 neurons had2he< 20 2D
DFT coefficients or the position-pitch map as inputs. Theosdc
hidden layer was composed by 12 neurons fully connectedeto th
first hidden layer. The output layer was formed by 10 neurons,
corresponding to each class in Tab. 1. These output neumhs h
softmaxactivation functions [11]. Thus, their outputs correspeohd
to the estimated posterioriprobabilities of the input feature vector,
or the 0.5 s frame, corresponding to each scene class.

The overalla posterioriprobability of each class for a 10 s au-
dio segment was estimated by adding up the logarithms ofrihre p
babilities of its frames. For all frames, segments and dings, the
class assigned by the MLP was estimated to be the classngettu
highesta posteriorilog-probability.

5. EXPERIMENTS & RESULTS

The classification experiment corresponding to the bas@hmlu-
ation procedure proposed for the acoustic scene clasmficztal-
lenge in DCASE 2018[12] was run. The confusion matrix corre-
sponding to this experiment is in Tab. 2. The overall corctassifi-
cation rate (CCR) for audio segments is 62.3%. It is notdwattat

if classes are grouped in three types: indoor (airport, gimgpmall
and underground station), outdoor (public squate, padasitreet,
street with traffic and urban park), and in-transport (trbos and
underground), the majority of confusions happen betweassels

of the same type. In fact, the system classifies audio segnfrent
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indoor environments as corresponding to one of the indassels
in 79.7% of cases. Similarly, for outdoor classes this ratehes
88.3%, and for in-transport classes the rate is 92.9%.

6. CONCLUSIONS

This paper presents a system for the automatic classificatio
acoustic scenes based on the EMS and position-picth maps. Th
proposed system exploits the availability of two channelhe ste-
reophonic recordings by building a representation of tlaiajpdis-
tribution of sound sources from the cross correlation betwihe
binaural signals. Features from both types of analysis aloees
quently combined to build a feature vector for each audimé&a

The signal analysis scheme was designed taking into account
several issues. The first stages of the system are a simipdificat
the peripheral auditory system [4]. The specific respon$ekeo
gammatone filters were chosen so that the filter-bank fulye e
the pass-band of the microphone. The average energy at the ou
put of each filter was kept as a feature, hence accountinghéor t
relevance of the energy spectrum for acoustic event detef#i.
Slow modulations of these energies were described by neduice
dimensionality of the EMS using the DCT, a common-use tool fo
data compression in image processing [16]. In turn, the déioaa-
lity of position-pitch maps was reduced by calculating tBel2FT,
and the parametrization scheme was made orientationiamiary
taking only the modulus of such 2D DFT.

Reported results (Tab. 2) indicate that the proposed syséem
forms better (CCRx 62.3%)than the baseline system provided in
DCASE 2018. In addition, system errors mainly happen betwee
classes of the same type, either indoor, outdoor or in4h@ms
Thus, the system correctly indentifies the type of class iR3%5
of cases, without any explicit training in this regard.
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