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ABSTRACT

A system for the automatic classification of acoustic scenesis
proposed that uses the stereophonic signal captured by a binau-
ral microphone. This system uses one channel for calculating the
spectral distribution of energy across auditory-relevantfrequency
bands. It further obtains some descriptors of the envelope modula-
tion spectrum (EMS) by applying the discrete cosine transform to
the logarithm of the EMS. The availability of the two-channel bi-
naural recordings is used for representing the spatial distribution of
acoustic sources by means of position-pitch maps. These maps are
further parametrized using the two-dimensional Fourier transform.
These three types of features (energy spectrum, EMS and position-
pitch maps) are used as inputs for a standard multilayer perceptron
with two hidden layers.

Index Terms— Acoustic scene classification, modulation
spectrum, position-pitch map, multilayer perceptron

1. INTRODUCTION

The automatic classification of acoustic scenes, or computerised
acoustic scene recognition (CASR) [1] aims at recognising the con-
text in which a given acoustic signal is produced. While its objecti-
ves are different from those of computerised auditory sceneanalysis
(CASA), both CASR and CASA share some common challenges
and can thus be considered close to one another [2].

A significant portion of computerised acoustic scene recogni-
tion (CASR) system proposals are based on parametrisation sche-
mes which describe the signal in either spectral or cepstraldom-
ains [3]. Consistently with typical approached for modelling the
peripheral auditory system in computerised auditory sceneanalysis
(CASA) [4], all the cited proposals include spectral analyses with
greater bandwidths for higher frequencies. While the temporal di-
mension of perceived signals seems to be key for perception [4],
only some of the previous works included modelling of the tem-
poral evolution of the parameters in the set of proposed features.
Alternative options for considering the temporal dimension in the
classification scheme imply designing classifiers with time-varying
outputs such as recurrent, convolutional or time-delay neural net-
works [3].

In other applications of acoustic signal processing, such as
speaker recognition, the temporal dimension is modelled bycal-
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culating frame-to-frame variations of parameters [5], theso called
∆ (short for 1st derivative) and∆∆ (2nd derivative) parameters.
However, these are of limited value in the case of sound eventde-
tection, since∆∆ parameters added no significant improvement to
the results in [6]. The problem of CASR is closely related to the
problem of sound event detection [1]; therefore, this limited infor-
mative value of fast variations in parameter values is to be expected
also in CASR.

From another point of view, the availability of binaural acoustic
signals can lead to relevant improvements in CASR systems, speci-
ally if the spatial information present in these two-channel signals is
exploited, instead of simply processing each channel independently
and subsequently aggregating parameters into a single feature vec-
tor [7].

In this paper, we propose a system for the classification of acou-
stic scenes based on features obtained from the envelope modula-
tion spectrum (EMS) [8] calculated using a gammatone filter-bank
[9]. This EMS is calculated from one of the available audio chan-
nels, while the spatial information conveyed by the binaural signal
is modelled by the position-pitch plane obtained after the cross-
correlation function of the two channels [10]. These features are
used as inputs for a simple multilayer perceptron (MLP) withonly
two hidden layers and as manysoftmaxoutputs as classes of acou-
stic scenes to be recognised [11].

2. MATERIALS

Audio recordings correspond to the TUT Urban Acoustic Scenes
2018 dataset [12]. This dataset consists of recordings captured at
distinct locations and split into 10-second segments. The duration
of recordings ranged from 5 to 6 min. A Zoom F8 multitrack re-
corder and a Soundman OKM II Klassik/studio A3 binaural mi-
crophone were used for recording, hence producing a stereophonic
signal. The microphone response can be considered flat between
20 Hz and 20 kHz. Recordings were captured with sampling rate
equal to 48 kHz and 24 quantization bits. Each recording location
corresponded to one of the classes listed in Tab. 1.

3. SIGNAL ANALYSIS

The two audio channels comprising each recoding were first prepro-
cessed to remove their mean values. Their combined mean square
value was subsequently normalised. Normalisation was performed
by the same factor in both channels so as to preserve their level
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# Class name
1 Airport
2 Indoor shopping mall
3 Underground station
4 Pedestrian street
5 Public square
6 Street with medium level of traffic
7 Travelling by tram
8 Travelling by bus
9 Travelling by underground
10 Urban park

Table 1: Classes of acoustic scenes: 3 vehicle, 4 indoor, 3 outdoor.
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Figure 1: Frequency responses of the filters in the filter-bank with
central frequencies up to 3.5 kHz (25 filters).

differences, that is, the root mean square value of all samples inclu-
ded in both channels was computed for normalisation. Afterwards,
each channel was split in frames with duration 0.5 seconds, and
50% overlap between consecutive frames.

Each frame in the left channel was processed by a filter-bank
consisting of 40 gammatone filters [9] with central frequencies ran-
ging from 27.5 Hz to 17.09 kHz. The central frequencies of the
filter-bank were chosen so that the pass-bands of contiguousfilters
were adjacent but not overlapping, i.e. the upper cut-off frequency
of one filter was the same as the lower cut-off frequency of thenext.
Figure 1 illustrates the frequency responses for the first filters.

In CASA systems, the filter-bank modelling the cochlear fre-
quency behaviour is followed by a non-linear model of neuromecha-
nical transduction [13]. This non-linear system approximately per-
forms compression of the higher signal peaks and half-wave rectifi-
cation [14]. As this produces a too detailed set of signals, it is usual
to apply low-pass filtering and decimation afterwards [4]. The im-
plementation of this model is computationally expensive due to its
non-linearities. For this reason, we substitute it by full-wave rectifi-
cation followed by a 5th order Butterworth low-pass filter with cut-
off frequency equal to 80 Hz and decimation to yield a sampling
frequency equal to 200 Hz.

Each resulting frame is further processed by computing its dis-
crete Fourier transform (DFT). The EMS [8] is obtained by stacking
the square modulus of the DFT corresponding to the 40 gammatone
filters. In order to reduce the dimensionality of the EMS, itscom-
ponents corresponding to the fastest variations of the signal were
discarded. Specifically, a threshold of 24 Hz was set for the modu-
lation frequency. Therefore, each signal frame was represented by
a matrix, i.e. EMS, of 40×9 elements. The first data column repre-
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Figure 2: Logarithm of the LTAS (top) and map of modulation ener-
gies (bottom) of a sample 0.5 s audio frame.

sents the average energy at the output of each gammatone filter, i.e.
the long-term average spectrum (LTAS) of the audio frame. The re-
maining 8 columns represent the energies of amplitude modulations
between 0 and 3 Hz, between 3 and 6 Hz, etc. Figure 2 depicts the
LTAS (top) and the modulation energies (bottom) corresponding to
a 0.5 s frame in an underground station.

The signal analysis scheme described so far transforms one
channel of the audio recorded during 0.5 seconds into a feature vec-
tor of 40×9 = 360 components. The dimensionality of this feature
space was reduced as follows. As stated before, the first column in
the EMS (see Fig. 2) corresponds to the average energy at each
frequency band. This is relevant for discriminating among certain
types of acoustic events [6], so the corresponding 40 valuesfor each
EMS were kept unchanged. Only a logarithm operation was applied
in order to reduce the skewness of their distribution. Similarly to
the approach in [15], the remaining 8 columns of each EMS were
processed as if they were a grey-scale image. Specifically, the two-
dimensional discrete cosine transform (DCT) [16] of the logarithm
of the EMS was calculated, and the block corresponding to thefirst
8 × 8 DCT coefficients was chosen as a lower-dimensional repre-
sentation of each40× 8 EMS. Therefore, after this dimensionality
reduction, each audio frame of duration 0.5 s was represented by a
feature vector with(40 + 64) · 2 = 104 components.

The spatial information provided by the 2-channel recordings
was represented by generating the position-pitch mapρ (ϕ, f) defi-
ned as [10]:

ρ (ϕ, f) =
1

2K + 1

K
∑

k=−k

Rlr

(

k
fs

f
+

dfs

c
cosϕ

)

(1)

whereϕ (azimut - rad) andf (frequency - Hz) are the indepen-
dent variables of the map,Rlr (τ ) is the estimated cross-correlation
between left and right channels at time lagτ , fs is the sampling fre-
quency (48 kHz),d is the interaural distance (estimated to be 14 cm
for this experiment),c is the phase speed of sound (estimated to be
343 m/s for this experiment), andK is the largest possible integer
given the maximum time lagτ for whichRlr (τ ) has been estimated
(τ ≤ 100 ms in our case).

The position-pitch map was calculated for each 0.5 s audio
frame for−π < ϕ ≤ π with a resolution of π

60
rad, and for
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Figure 3: Position-pitch map of corresponding to a sample 0.5 s
audio frame.

20 < f ≤ 2 000 with a resolution of10 Hz. This produced a
120 × 199 map with shifts in theϕ dependent on the orientation
of the head-mounted microphone system. For illustration purpo-
ses, Fig. 3 depicts the position-pitch map corresponding toa 0.5 s
frame in an underground station. In order to reduce the number of
dimensions, a bidimensional discrete Fourier transform (2D DFT)
was calculated, and only the20 × 20 elements corresponding to
the lowest spatial frequencies were taken as input featuresfor the
acoustic scene classifier. Furthermore, in order to make thepara-
meters orientation-independent, only the modulus of the 2DDFT
was considered.

4. CLASSIFICATION

The afore-mentioned feature vectors were used as inputs fora mul-
tilayer perceptron (MLP) two hidden layers. The first hiddenlayer
comprised 24 neurons. The first 4 neurons were connected to the 40
inputs corresponding to the LTAS of each frame, a second group of
8 neurons were connected to the8 × 8 DCT coefficients represen-
ting the EMS, and the remaining 12 neurons had the20 × 20 2D
DFT coefficients or the position-pitch map as inputs. The second
hidden layer was composed by 12 neurons fully connected to the
first hidden layer. The output layer was formed by 10 neurons,one
corresponding to each class in Tab. 1. These output neurons had
softmaxactivation functions [11]. Thus, their outputs corresponded
to the estimateda posterioriprobabilities of the input feature vector,
or the 0.5 s frame, corresponding to each scene class.

The overalla posterioriprobability of each class for a 10 s au-
dio segment was estimated by adding up the logarithms of the pro-
babilities of its frames. For all frames, segments and recordings, the
class assigned by the MLP was estimated to be the class yielding the
highesta posteriorilog-probability.

5. EXPERIMENTS & RESULTS

The classification experiment corresponding to the baseline evalu-
ation procedure proposed for the acoustic scene classification chal-
lenge in DCASE 2018[12] was run. The confusion matrix corre-
sponding to this experiment is in Tab. 2. The overall correctclassifi-
cation rate (CCR) for audio segments is 62.3%. It is noteworthy that
if classes are grouped in three types: indoor (airport, shopping mall
and underground station), outdoor (public squate, pedestrina street,
street with traffic and urban park), and in-transport (tram,bus and
underground), the majority of confusions happen between classes
of the same type. In fact, the system classifies audio segments from

indoor environments as corresponding to one of the indoor classes
in 79.7% of cases. Similarly, for outdoor classes this rate reaches
88.3%, and for in-transport classes the rate is 92.9%.

6. CONCLUSIONS

This paper presents a system for the automatic classification of
acoustic scenes based on the EMS and position-picth maps. The
proposed system exploits the availability of two channels in the ste-
reophonic recordings by building a representation of the spatial dis-
tribution of sound sources from the cross correlation between the
binaural signals. Features from both types of analysis are subse-
quently combined to build a feature vector for each audio frame.

The signal analysis scheme was designed taking into account
several issues. The first stages of the system are a simplification of
the peripheral auditory system [4]. The specific responses of the
gammatone filters were chosen so that the filter-bank fully covered
the pass-band of the microphone. The average energy at the out-
put of each filter was kept as a feature, hence accounting for the
relevance of the energy spectrum for acoustic event detection [6].
Slow modulations of these energies were described by reducing the
dimensionality of the EMS using the DCT, a common-use tool for
data compression in image processing [16]. In turn, the dimensiona-
lity of position-pitch maps was reduced by calculating the 2D DFT,
and the parametrization scheme was made orientation-invariant by
taking only the modulus of such 2D DFT.

Reported results (Tab. 2) indicate that the proposed systemper-
forms better (CCR≈ 62.3%)than the baseline system provided in
DCASE 2018. In addition, system errors mainly happen between
classes of the same type, either indoor, outdoor or in-transport.
Thus, the system correctly indentifies the type of class in 75.3%
of cases, without any explicit training in this regard.
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D. Petrovska-Delacrétaz, and D. A. Reynolds, “A tutorial on
text-independent speaker verification,”EURASIP J. Adv. Sig-
nal Process., vol. 2004, no. 4, pp. 1–22, 2004.

[6] J. M. Gutiérrez-Arriola, R. Fraile, A. Camacho, T. Durand,
J. L. Jarrı́n, and S. R. Mendoza, “Synthetic sound event de-
tection based on MFCC,” inProc. of DCASE2016, 2016, pp.
30–34.



Detection and Classification of Acoustic Scenes and Events 2018 Challenge

Assigned class #
True class 1 2 3 4 5 6 7 8 9 10
Airport 52.1 17.0 4.9 19.6 2.6 0 0.4 0 3.4 0

Shopping mall 7.2 87.1 1.1 4.7 0 0 0 0 0 0
Underground station 7.7 14.3 46.7 9.3 0.8 4.6 3.1 3.5 8.9 1.2

Pedestrian street 8.5 6.9 3.2 45.8 29.2 4.9 0 0 1.6 0
Public square 0.5 0 6.9 6.9 50.9 15.3 0 3.2 0 16.2

Street with traffic 0 0.4 2.4 5.3 10.2 78.1 0 0 0.8 2.9
Tram 3.83 0 0.8 0 0 0 67.4 12.3 14.9 0.8
Bus 0 0 0 0 0 0 19.0 78.9 1.2 0.8

Underground 0 0 2.3 2.3 5.8 3.8 47.9 4.6 33.0 0.4
Park 0 0 5.0 0.4 0.8 4.6 6.2 0.4 0.4 82.2

Table 2: Confusion matrix (in %) for the baseline evaluationexperiment. Class numbers in column headers correspond to the order in Tab. 1.
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