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ABSTRACT

In this paper, we present a gated convolutional recurrent neural net-
work based approach to solve task 4, large-scale weakly labeled
semi-supervised sound event detection in domestic environments,
of the DCASE 2018 challenge. Gated linear units and a tempo-
ral attention layer are used to predict the onset and offset of sound
events in 10s long audio clips. Whereby for training only weakly-
labeled data is used. Virtual adverserial training is used for regu-
larization, utilizing both labelled and unlabelled data. Furthermore,
we introduce self-adaptive label refinement, a method which allows
unsupervised adaption of our trained system to increase the quality
of frame-level class predictions. The proposed system reaches an
overall macro averaged event-based F-score of 34.6%, resulting in
a relative improvement of 20.5% over the baseline system.

Index Terms— DCASE 2018, Convolutional neural net-
works, Sound event detection, Weakly-supervised learning, Semi-
supervised learning

1. INTRODUCTION

In this paper we summarize the methods we use to solve task 4 of
the DCASE 2018 challenge, the large-scale weakly labeled semi-
supervised sound event detection in domestic environments.

The proposed method uses a gated convolutional recurrent neu-
ral network (GCRNN). This is similar to the best model [1] of last
years DCASE 2017 challenge task 4 [2] which also used a GCRNN
based approach. As an extension to the attention mechanism we in-
troduce an algorithm we call self-adaptive label refinement, which
uses unlabeled input data and clip-level class predictions to refine
the frame-level predictions of our model. To incorporate the pro-
vided unlabeled data we use virtual adverserial training (VAT) [3].
VAT has, amongst others, already been used successfully in semi-
supervised text [4], image classification [3] tasks and acoustic event
detection [5]. Furthermore VAT showed competitive performance
against other deep semi-supervised learning algorithms [6].

2. PROPOSED METHOD

2.1. Gated convolutional recurrent neural network

The winning team of last year’s DCASE SED (sound event detec-
tion) task [1] showed that using gated linear units (GLUs) [7] in-
stead of commonly used activation functions like rectified linear
units (RELUs) or leaky ReLUs in the CRNN is an eligible approach
for SED.

Gating mechanisms have been used successfully in a variety of
neural network architectures. For example in RNNs using LSTM
[8] cells, which have a separate input, output and forget gate. The
rough idea behind gating mechanisms is to have a gate which can
control how information flows in the network.

In the setting of SED, the GLU units should adapt their behavior
such that they act as an attention mechanism on the time-frequency
(T-F) bin of each feature map. They can set their value value close
to one if information related to any of the considered audio events
passes through, and otherwise block the flow of unrelated informa-
tion by setting their value close to zero.
GLUs are defined as follows:

Y = (W ∗X+ b)� σ(V ∗X+ c), (1)

Where W and V denote the convolutional filters with their respec-
tive biases b and c, σ is the sigmoid function, X denotes the input
to the layer, and � denotes elementwise multiplication.

Figure 1 shows how the gated CNN blocks are incorporated into
the network, whereby in our model we use three subsequent gated
CNN blocks.

2.2. Virtual adverserial training

We make use of (VAT) [3] for regularization. The virtual adverserial
loss is defined such that the robustness of the model’s posterior dis-
tribution p(y|x) is increased for small and bounded perturbations
of the input x.

The adversarial perturbation rv-adv is computed by maximizing
a non-negative distance function between the unperturbed p(y|x; θ̂)
and perturbed p(y|x+ r; θ) posterior. Whereby θ̂ denotes the cur-
rent model parameter.

When using VAT the following additional cost is added to the
objective function:

KL[p(y|x; θ̂)||p(y|x+ rv-adv; θ)]. (2)

The Kullback-Leibler divergence KL is used as distance func-
tion between p(y|x; θ̂) and p(y|x+ r; θ), and ||r|| is limited to the
sphere around x with some radius ≤ ε.

rv-adv = arg max
r,‖r‖≤ε

KL(p(y|x; θ̂)||p(y|x+ r; θ)) (3)

Since the virtual adversarial perturbation only requires input x
and does not require label y, VAT is applicable to semi-supervised
training.
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Figure 1: Network structure

2.3. Attention mechanism

To predict the temporal locations of each audio event which is pre-
sented in a given input sample, we use a similar approach as used
in [1]. We extend it by using a method based on weak and strong
prediction alignment to select for each event class an appropiate
post-processing. Whereby the term weak prediction is used to refer
to predictions at clip-level and strong prediction is used to refer to
class predictions at time-level.

As depicted in Figure 1, the output of a bidirectional RNN is fed
into both an attention and a classification layer. The classification
layer uses a sigmoid activation function to predict the probability of
each occurring class at each timestep. While the attention layer uses
a softmax activation over all classes. Intuitively, using a softmax in
the attention layer should aid the network to learn to pick the most
dominant class at each frame. Although this might not be an ideal
approach if temporal overlaps of multiple events are occuring, since
then a more dominant event might be able to suppress the activation
of another one.

The final prediction o for the weak labels is determined by the
weighted average of the element-wise multiplication of the attention
and classification layer output:

o =

∑T
t zcla(t)� zatt(t)∑T

t zatt(t)
, (4)

Where zcla(t) and zatt(t) are the outputs of the classification layer
and of the attention layer. T denotes the frame-level resolution of
the input spectogram.

Figure 2 shows the output of the classification and attention
layer for one audio clip of the development set containing several
events labeled as dog. It can be seen that there is a clear corre-
lation between ground truth event labels and the activations of the
attention and classification layer. However it is not obvious how to
extract the exact start and end points of each individual event from
the layer activations. Our experiments showed that just taking the
product of the attention and classification layer activations, thresh-
olded with a fixed value for all classes, e.g. 0.5, gives unsatisfactory
results. Also it has been shown in similar weakly labeled SED set-
tings that the trained network adapts differently for different classes
[9]. Especially there seems to be a difference between classes which
tend to have short event durations in contrast to classes who span the
majority of timesteps of a clip. Considering this, it might be neces-
sary to use a different post-processing for each class to account for
that.

The fact that no strong event annotations are available for train-
ing makes this a non-trivial problem, otherwise a simple approach
would be to test several post-processing methods and select for each
class the one which gave best performance.

We introduce self-adaptive label refinement, where we check
the alignment between strong and weak predictions, and use this as
an approximate prediction how well a given post-processing method
performs at extracting the right onset and offset of events. Using this
approach we can use unlabelled data to estimate how well a given
post-processing parameterization performs for each class, and take
the best performing parameterization for our final strong prediction.

For post-processing we threshold the output value of the classi-
fication layer, followed by a median filter. Therefore the parameters
we vary in each iteration are the threshold, and the width of the
median filter.

In particular, when training has finished, the following steps are
repeated on each class:
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1. A full forward pass is performed to create weak and strong
predictions for each clip. Whereby for each class, strong pre-
dictions are only considered if the respective weak prediction
is positive.

2. For each detected event in each clip, a new sample is created
containing only the frames of the clips original spectogram
where the detected event occurs according to the strong pre-
diction. Those new samples which possibly contain the class,
are labelled as 1.
Additionally each time events of a class are detected in a clip,
another new sample is created which contains only the tem-
poral frames of the original spectogram where no occurence
of the given class was predicted. Those are all labelled to 0.

3. The generated new samples are then passed through the net-
work. Using the resulting weak predictions and the labels set
beforehand, a crossentropy loss for each class is calculated.
This loss indicates how good the weak and strong predictions
align.

4. For each class the post-processing with the smallest loss
value is selected.

This approach does not need any labels, neither strong nor
weak. Therefore our method for post-processing selection is ap-
plicable using data of both, the weakly-supervised and the unsu-
pervised dataset. Also the method can be used to adapt the post-
processing at inference time to new unseen data.

2.4. Training

For each sample the cross entropy loss is calculated between the
predicted probabilities for each class and the weak ground truth la-
belling:

E = − 1

N

N∑
i

M∑
c

l(i)c log(y(i)c ), (5)

Where the number of classes is denoted by M, the number of weakly
labeled 10 second audio clips by N, y(i)c denotes the predicted prob-
ability for class c of sample i, and l(i)c is the given binary label in
the weakly labelled test set.

In each step a batch containing an equal distribution of samples
from the labelled and unlabelled data set is processed. The total
loss consists of the cross entropy loss of the labelled samples, reg-
ularized with VAT depending on both the labelled and unlabelled
samples weighted by a factor λ:

L = − 1

N

N,M∑
i,c

l(i)c log(y(i)c )

+ λ

N+K∑
i

KL(p(y|x(i); θ̂)||p(y|x(i) + r; θ)),

(6)

Where K denotes the number of unlabelled in-domain audio clips.
We did not use any of the provided out-of-domain data.

The loss was optimized using Adam [10] with a learning rate of
0.001 and a batch size of 30. The network was implemented using
tensorflow [11].
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Figure 2: Classification and attention layer activations for file:
Y0a8RB5eOGJ4 30.000 40.000.wav and class dog

3. EXPERIMENTS AND RESULTS

3.1. Dataset

The method is evaluated using a subset of the Google Audioset [12],
which was provided with task 4 of the DCASE 2018 challenge[13].

All audioclips are of 10-second length and contain one or mul-
tiple sound events of 10 different classes. Whereby different events
may overlap. The dataset consists of a training, testing and evalua-
tion subset.

The training subset consists of 1,578 weakly labeled clips, an
unlabeled in-domain set of 14,412 clips and an unlabeled out-of-
domain set of 39,999 clips extracted from classes that are not con-
sidered in task 4.

The test set contains 288 clips, whereby the distribution in terms
of clips per class is similar to the weakly labeled training set. For
the test set strong labels from human annotators are given, therefore
timestamps for the onset and offset of each event in the clip are
included. For training only weak labels are used. The weak labels
indicates if a given event occurs somewhere in a 10s audio clip,
however no information about the onset and offset of the events,
nor how often the event occurs is given. This setting can also be
considered as a multiple instance learning (MIL) problem [9].

Log-Mel filter banks are used as features. Each sample is split
into 240 frames by 64 mel frequency channels. Before the filters
are calculated, each sample is converted to a mono signal with a
sampling rate of 44,100Hz.

1. A model is trained with the available weak labels. The
trained first model is then used to predict labels for the unla-
beled in domain set.

2. A second model is then trained on the unlabeled in domain
set predictions of the first model, and the weakly labeled set
is used to validate the model.
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baseline no adaption adaption to train set adaption to test set
F1 ER F1 ER F1 ER F1 ER

Alarm bell ringing - - 27.9% 1.38 21.0% 1.14 18.2% 1.12
Blender - - 27.9% 1.52 23.2% 1.33 38.1% 0.97
Cat - - 29.9% 2.87 19.2% 1.54 25.2% 1.30
Dishes - - 4.9% 1.93 32.5% 1.16 32.5% 1.16
Dog - - 29.3% 2.00 2.3% 1.36 15.8% 1.36
Electric shaver toothbrush - - 7.4% 2.61 40.0% 0.96 40.0% 0.96
Frying - - 14.1% 3.79 40.0% 1.50 40.7% 1.46
Running water - - 18.0% 1.89 31.1% 1.22 32.4% 1.21
Speech - - 22.6% 1.25 41.3% 0.97 40.2% 0.98
Vacuum cleaner - - 37.5% 2.58 40.5% 1.31 63.0% 0.75
Baseline 14.06% 1.54 21.8% 2.18 29.1% 1.25 34.6% 1.1

Table 1: Class-wise results on the development set, total scores are macro averaged

3.2. Evaluation

For evaluation the macro averaged event-based F-score [14] is used.
The event-based metrics are calculated using an open source tool-
box called sed eval [15]. As given by the dcase challenge, for calcu-
lation of event-based metrics a 200ms collar on onsets and a 200ms
/ 20% of the events length collar on offsets was set. For calculation
of the total performance over all individual classes, macro averag-
ing is used. This has the effect that each class has equal influence
on the final metrics, even if the distribution of classes in the tested
set is unbalanced.

3.3. Results

Table 1 shows the event based F1 scores and error rates of our sys-
tem on the development set. Whereby we compare the resulting
scores when we did no refinement, and when we performed self-
adaptive label refinement using data of the training and development
set.

For the post-processing of the system with no refinement, we
used a fixed threshold of 0.5 for all classes and no median filter on
the output.

All three systems perform better than the baseline system.
Whereby using self-adaptive label refinement gives a significant
performance increase, whereby the increase is bigger when the
adaption was done on the development set.

4. CONCLUSION

In this paper, we proposed a method for sound event detection using
only weakly labeled and unsupervised data. Our approach is based
on GCRNNs, whereby we introduce self-adaptive label refinement,
a method which can be used to adapt the model to unlabelled data,
and increase SED performance.

Our final system performance is with 34.6% significantly
higher than the score of the baseline system 14.06%.
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