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ABSTRACT

Acoustic scenes are defined by various characteristics such as
long-term context or short-term event, making it difficult to se-
lect input features or pre-processing methods suitable for acoustic
scene classification. In this paper, we propose an ensemble model
which exploits various input features that vary in their degree of pre-
processing: raw waveform without pre-processing, spectrogram,
and i-vector a segment-level low dimensional representation. We
tried to effectively perform combination of deep neural networks
that handle different types of input features by using a separate scor-
ing phase by using Gaussian models and support vector machines
to extract scores from individual system that can be used as a confi-
dence measure. Validity of the proposed framework is tested using
the detection and classification of acoustic scenes and events 2018
dataset. The proposed framework showed accuracy of 73.82% us-
ing the validation set.

Index Terms— Acoustic scene classification, DNN, metric
learning

1. INTRODUCTION

Acoustic scene classification (ASC) is a task of increasing demand
with its applicability towards various machines and intelligent sys-
tems. Three noticeable features can be observed by analyzing the
past editions of detection and classification of acoustic scenes and
events (DCASE) competitions: (a) deep neural networks (DNNs)
are mainly used with various architectures, (b) various features such
as spectrogram, MFCC, CQCC are being used, and (c) ensemble of
two or more classifiers are used with majority voting or score-sum.

Despite this active research, choosing an appropriate feature for
ASC task remains a difficult problem. One of the main factors that
make this problem more difficult may be the fact that the features
that are appropriate for representing each scene in the ASC task
can be different. For example, segment-level features such as an
i-vector may be useful for classifying scenes where the character-
istics appear over a long period of time. Frame-level features such
as sepctrograms can be used to classify scenes where characteristics
occur in a particular frequency band at short intervals. In addition,
raw waveform without any pre-processing can be used when consid-
ering characteristics that are difficult to be represented by existing
features. Therefore, in order to consider all the characteristics of
various kinds of features, we trained DNNs which input each type
of feature and combined results from multiple DNNs.
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Another problem is that the two most used ensemble methods,
majority voting and score-sum, both do not include confidence mea-
sures. Majority voting actually ‘vote’ classifiers’ and score-sum
uses a softmax activation of the output layer as confidence score
which actually cannot represent confidence [1].

In this paper, we make the following contributions:

1. Exploit features that can be more useful for classifying dif-
ferent scenes.

2. Train Gaussian models and support vector machines to ex-
tract scores with confidence.

Specifically, three features are individually studied for ASC
task. The first feature is raw waveform which is directly input to
the DNN with pre-emphasis as its pre-processing. Another is spec-
trogram which is widely used for ASC task with convolutional neu-
ral networks (CNNs). The last is i-vector, a segment-level low di-
mensional representation, also known to suit ASC task. Gaussian
mixture models (GMMs) and support vector machines (SVMs) are
used as back-end classifiers to get a confidence score for each class
given an embedding. The overall proposed framework is depicted
in Figure 1.

The remainder of this paper is organized as follows. Section
2 describes the three systems with different features used in this
study. Section 3 presents metric learning scheme with the proposed
running mean and its variations. Experimental settings and sys-
tem specifications are given in Section 4 with experimental results.
Section 5 introduces relevant works and the paper is concluded in
Section 6.

2. SYSTEM DESCRIPTION

In this section, we describe each system used for ensemble accord-
ing to its input features.

2.1. Raw waveform based system

Recently, systems that show promising results with DNNs that di-
rectly input raw waveforms have been proposed in various tasks
[2, 3]. Through visualization of raw waveform based DNN models,
it has been shown that the kernels of 1-d convolutional layers detect
specific frequency bands [4]. Many raw waveform systems aim to
extract features that suit the objective defined by the loss function
of DNN better than existing acoustic feature extracting techniques
through extracting most useful frequency bands. In this work, we
use the RWCNN model proposed by Jung et al. [3] with modifi-
cations. The used raw waveform system consists of convolutional
blocks and fully connected layers: each convolutional block con-
sists of 1-d convolutional layer followed by layer normalization,
leaky rectified unit activation and max pooling. Modifications and
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Figure 1: Illustration of the overall framework.

detailed description of the raw waveform based system is present in
Section 3.3.

2.2. Spectrogram based system

Spectrogram is a widely used feature in speech signal processing
systems such as speech recognition or speaker recognition. We ex-
pected that the detection of events occurring in a specific frequency
band using the spectrogram will contribute to perform the ASC task.
2d convolutional neural network (CNN) was used to embed the
spectrogram extracted from each segment so that it could be used
for the metric learning. Cosine similarity between each sample and
centroid of each class is used for the metric learning. We used max
feature map (MFM) based architecture among various CNN varia-
tions [5]. In the MFM based architecture, max operation is applied
to multiple featuremaps to calculate the output of each layer. In this
case, we expected that the appropriate filter size will be searched
while filters are trained to classify each scene, through competing
between the filters of different sizes.

2.3. i-vector based system

In contrast to raw waveform or spectrogram, the i-vector (identity
vector) is a low-dimensional representation of a given segment us-
ing factor analysis [6]. Thus, regardless of the length of a given
segment, one vector with fixed dimensionality is extracted. The i-
vector was originally proposed for speaker verification, but it has
been shown in previous DCASE challenges to well perform in ASC
task as well [7].

2.4. back-end scoring

support vector machine (SVM) with rbf kernel and sigmoid kernel,
and single Gaussian model with diagonal and full covariance were
used as back-end classifier. The classifiers were trained to classify
the acoustic scene by using embeddings from DNNs. We expected
that using back-end classifier for scoring instead of softmax output,
may lead ensemble of multiple DNNs more efficient.

3. EXPERIMENTAL SETTINGS

Experiments in this paper utilize soundfile and scipy python mod-
ules for raw waveform and spectrogram extraction [8]. Keras deep
learning toolkit [9] with tensorflow back-end [10, 11] was used for
DNN training and decoding. The scikit-learn module was used for
Gaussian model and SVM scoring [12].

3.1. Dataset

All experiments in this paper uses task 1-a among the DCASE 2018
dataset. Task 1-a of the DCASE 2018 dataset comprises 8,640
audio segments recorded in 48 k sampling rate, 24 bit resolution,
stereo, and divided into length of 10 seconds. 4 fold cross-validation
was conducted based on the provided meta data about the place of
recordings. The development set and the validation set does not
have audio segments from identical place. We only report the accu-
racy on the first fold in this paper.

3.2. Feature configurations

Stereo raw waveforms are used as input feature to the DNN with
pre-emphasis resulting in feature shape of (48,000 * 10, 2).

Spectrograms were extracted by shifting 30ms window by
10ms. After extracting spectrogram represented by 721 coefficients
on each window, only 300 coefficients of low frequency bands were
used; we empirically confirmed that low frequency bands are more
useful for ASC. Finally, a spectrogram of size 499×300 was ex-
tracted from each segment of 10 second.

The i-vectors are extracted from a diagonal GMM with 1024
components, trained with 60- dimensional MFCC features. A total
variability matrix that can extract an 200-dimensional i-vector was
trained for 10 iterations. Length normalization nor linear discrimi-
nant analysis were applied and kaldi toolkit [13] was used.

3.3. System configurations

Raw waveform based DNN uses the RACNN-LSTM model from
Jung et al.’s work with a few modifications for ASC task [3]. Modi-
fications include followings: stride size of the strided convolutional
layer was changed to 12 for 48 kHz sampling rate, 256 kernels used
for the last convolutional layer, and stereo audio input instead of
mono.

Spectrograms based DNN comprises two fully connected lay-
ers following three MFM layers. Fully connected layers contain 256
nodes activated by leaky ReLU function. L2 normalization [14] was
applied to the output of the last fully connected layer. The config-
uration of MFM based system is shown in Table 1. In each MFM
layer, the output is calculated through the max operation between
featuremaps generated by filters of different sizes.

The i-vector based DNN comprises 4 fully connected layers.
In this system, DNN performs only as a feature enhancer because
i-vector is already sophisticated feature in segment-level. 4 fully
connected layers each have 512 units, and l-2 regularization is ap-
plied.
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Table 1: Configuration of MFM based CNN system.
layer output shape kernel sizes

1st MFM 499×300×32 5×5, 7×7, 9×9, 11×11
Max pooling 166×60×32 3×5

2nd MFM 166×60×64 3×3, 5×5, 7×7, 9×9
Max pooling 55×12×64 3×5

3rd MFM 55×12×64 3×3, 5×5, 7×7, 9×9
Max pooling 1×3×64 55×4

Average pooling 1×3×64 55×4
Concatenating 1×3×128

Flatten 384

3.4. Results

Table 2: Classification accuracy (%) of the individual systems and
ensemble system with 4 classifiers.
XXXXXXXXXsystem

classifier All All Gaussian SVM
w/o weight w weight w weight w weight

raw- 67.15 68.10 67.91 66.56waveform
spectrogram 66.24 66.20 66.44 66.44

i-vector 63.74 63.93 65.17 63.66
Ensemble 73.82 73.23 73.15 72.71
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