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ABSTRACT

Sound event detection is a challenging task, especially for scenes

with simultaneous presence of multiple events. Task4 of the 2018

DCASE challenge presents an event detection task that requires ac-

curacy in both segmentation and recognition of events. Supervised

methods produce accurate event labels but are limited in event seg-

mentation when training data lacks event time stamps. On the other

hand, unsupervised methods that model acoustic properties of the

audio can produce accurate event boundaries but are not guided by

the characteristics of event classes and sound categories. In this re-

port, we present a hybrid approach that combines an acoustic-driven

event boundary detection and a supervised label inference using a

deep neural network. This framework leverages benefits of both

unsupervised and supervised methodologies and takes advantage

of large amounts of unlabeled data, making it ideal for large-scale

weakly labeled event detection. Compared to a baseline system,

the proposed approach delivers a 15% absolute improvement in F1-

score, demonstrating the benefits of the hybrid bottom-up, top-down

approach.

Index Terms— Sound event detection, unsupervised learning,

weakly labeled data, restricted Boltzmann machine, conditional re-

stricted Boltzmann machine, convolutional recurrent neural net-

work

1. INTRODUCTION

Sounds in everyday soundscapes present a real challenge for audio

technologies in order to parse the changing nature of the scenes and

detect relevant events in the environment. With growing interest in

smart devices, smart assistants and interactive technologies, there

are increased efforts to develop robust ambient sound analysis

systems able to analyze soundscapes, detect and track different

sound sources and identify events of interest.

Parsing a scene to identify important events is a nontrivial task.

Even humans exhibit a notable degree of variability in detecting

occurrences of salient events when presented with realistic busy

scenes [1]. Machine audition has tackled the problem of sound

event detection by leveraging labeled data that allow machine

learning algorithms to ’learn’ characteristics of sound events, hence

allowing the system to detect them whenever they occur. This

* Contributed equally to this work

supervised approach yields a reasonable performance especially

in constrained settings where the nature of sound events and

background sounds is well captured by the labeled data available

for training. In reality, however, a fully supervised approach

has limited scalability especially when dealing with everyday

sound environments that can vary drastically depending on the

setting and density of sources present. Acquiring large amounts

of fully-labeled data in unconstrained environments is practically

unfeasible especially considering that the kind of labels required

for event detection involves not only identifying sound events in

a scene, but also accurately labeling time stamps of occurrence of

such events.

This in turn raises the question of potential benefits of unla-

beled data to augment supervised training methods. There is a

growing number of corpora that represent various urban sound-

scapes, domestic or workplace environments as well as everyday

sounds. The abundance of such unlabeled datasets can enrich our

ability to tackle ambient sound analysis provided the right kinds of

tools are available to take advantage of both labeled and unlabeled

data. DCASE 2018 task4[2] focuses on scenarios with large

amount of unlabeled data along with a small set of labeled data.

Past approaches to using unlabeled data to supplement supervised

training have taken advantage of novel ideas to data augmentation

to train machine learning systems that yield more robust event

detection accuracies [3]. In parallel, unsupervised techniques have

also been proposed to infer characteristics of sound events hence

taking into account the dynamics of sound classes [4].

In the current work, we aim to leverage both the power of ma-

chine learning using a combination of labeled and unlabeled data to

learn characteristics of event classes, as well as our knowledge of

the physical and perceptual attributes of sounds that can help guide

the segmentation of sound events as they occur in a scene. The lat-

ter approach employs principles from bottom-up auditory attention

models where we know changes in sound structure are flagged by

the human perceptual system as salient events that attract our atten-

tion for further processing. Detecting the onset and offset of these

events of interest provides an anchor to our event labeling system

that eliminates discontinuities in event labels hence resulting in no-

table improvement over a pure label-guided classification system.

Section 2 describes the proposed system for event detection. Sec-

tion 3 describes the experimental setup used to validate the proposed

system. Finally, Section 4 discusses concluding remarks and future
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directions.

2. PROPOSED ARCHITECTURE

The proposed system combines a bottom-up (acoustic-driven) and

top-down (label-guided) approach to detect sound events. The

bottom-up approach relies solely on the acoustic characteristics of

the audio signal to flag changes over time as captured in a high-

dimensional mapping of the signal. The top-down approach is a

supervised label-driven characterization of the sound labels derived

from a deep neural network.

2.1. Event boundary detection

The acoustic-driven approach employs a generative framework

to extract a rich mapping of the acoustic waveform that captures

both local and global spectro-temporal regularities in the signal.

The output of this representation is a rich array of activations in

a high-dimensional space which allow tracking auditory events

with different characteristics. This mapping is learned in an

unsupervised fashion on weakly labeled and unlabeled in-domain

training data.

This acoustic analysis is structured as a hierarchical system

with 2 main stages. First, a Restricted Boltzmann Machine (RBM)

[5] is employed to capture local spectral and temporal dynamics

in the audio input over contexts of 30ms. The RBM, trained us-

ing Contrastive Divergence(CD), takes as input a biomimetic audi-

tory spectrogram [6] and learns a mapping to Gaussian-Bernoulli

units that best reproduces the signal spectrum. After training, RBM

weights (W) and hidden bias (b) are used to transform input data

(v) as given in (1).

hi =

∑

j

vjWji + bi (1)

The next stage in the acoustic mapping further processes RBM

outputs (h) using an array of 10 conditional RBMs [7, 8]. The

cRBM array further analyzes the output of the first stage along a

range of temporal contexts from 30ms to 300ms, hence capturing

global dynamics in the signal and tracking events with different

characteristics. The cRBM layer also employs Gaussian-Bernoulli

visible-hidden units and is trained using CD. The weights (W, A)

and biases (b) of the cRBM array are used as an affine transform

to generate a final high-dimensional representation of the acoustic

signal, as given in (2).

b
t
i =

∑

j
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t−1

j Aji + bi

c
t
i =

∑

j

h
t
jWji + b

t
i

(2)

The activations across the nodes of each cRBM network are

further processed using Principal Component Analysis (PCA) [9]

to get directions of maximal variance and reduce dimensionality

to 16 dimensions per cRBM. The PCA outputs are then processed

through first order difference and smoothed using a moving aver-

age with window length inversely proportional to the cRBM con-

text length. The smoothed derivative from all the dimensions are

summed to produce a measure of activity in time. We flag local

maxima in this activity to indicate notable changes in the acoustic

Mel-band energy
(500×64 dim.)

GRU
GRU

GRU
GRU

GRU
GRU

GRU
GRU

BiGRU
(1 layer, 64units)

Dense
(500×10units, sigmoid)

CNN
(3 layer, 1×3 convolution, ReLU)

1×8 maxpool

1×4 maxpool

128 filters 128 filters 192 filters

1×2 maxpool

P
o

st
er

io
r

Figure 1: Convolutional recurrent neural network for acoustic event

labeling

signal and hence a likely index of new acoustic events. The clos-

est proceeding sample at 25% of the detected peak is marked as the

onset point. Local minima of the short-term energy in the signal

immediately following the detected onsets are flagged as offsets to

the corresponding onsets. All parameters are tuned to maximize the

F-score on the development set.

2.2. Event labeling

To label the acoustic event detected by the bottom-up approach, we

employ a supervised deep neural network. This neural network out-

puts a posterior of acoustic event in each time frame, which is com-

bined with the event boundary detection results for the class infer-

ence of acoustic events.

2.2.1. Convolutional recurrent neural network

For the classification of acoustic events, we apply a convolutional

recurrent neural network (CRNN), which is used as the baseline

system of the task 4 of DCASE 2018. The acoustic features used in

this system consist of 64 dimensional log mel-band energy extracted

in 40 ms Hamming windows with 50% overlap. The log mel-band

energy is then fed to the CRNN, which has 3 convolutional lay-

ers followed by a bi-directional gated recurrent units (BiGRU). The

network structure and parameters are shown in Fig. 1. To keep the

time resolution, the pooling is not performed along the time axis in

CNN layers. The CRNN is trained using Adam optimizer and an

early stopping technique.

2.2.2. Label inference

An acoustic event label isgiven to the unlabeled event by calculating

an average posterior of each acoustic event in the active duration. In

this report, we regard an acoustic event that has the highest average

posterior in the active duration as the classification result.

3. EXPERIMENTAL EVALUATION

3.1. Dataset

Audio data for Task4 of the DCASE Challenge 2018 is a subset of

Audioset[10] drawn from Youtube videos and consisting of various

sound classes occurring in domestic context. Training data includes

a small number of audio files labeled at the sound clip level along

with a large set of unlabeled files containing both in-domain and

out-of-domain data. Test data contains a development set which is

annotated with event boundaries at event level and an evaluation set

which is used to evaluate the submission. In our system, we used
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Table 1: F-score and error rate in event-based metrics

Method
Macro average Micro average

F-score Error rate F-score Error rate

Baseline 14.87% 1.52 8.87% 1.41

System 1 29.31% 1.40 34.11% 1.22

System 2 29.83% 1.44 33.46% 1.22

System 3 24.56% 1.46 27.19% 1.30

Ensemble 30.05% 1.36 34.12% 1.19

only weakly labeled and unlabeled in-domain training data for both

unsupervised and supervised models.

3.2. Evaluation metric

Event detection is evaluated event-by-event using macro average

and micro average of F1-scores. Macro average is computed as the

average of class-wise F-scores and micro average is the F-score of

all events irrespective of classes. Error rate (ER) is used as a sec-

ondary metric to assess errors in terms of insertions, deletions and

substitutions. sed eval toolbox[11] is used to compute F1-scores

and ER. Onsets are evaluated with collar tolerance of 200ms. Toler-

ance for offsets is computed per event as the maximum of 200ms or

20% of event length. An event is considered to be a hit only when

the predicted label matches with the ground truth and event bound-

aries correspond to the annotated boundaries. Hence any mismatch

in either the labels or boundaries will result in a false positive and a

false negative.

3.3. Baseline system

The baseline system is a CRNN with 3 CNN layers and 1 BiGRU

layer, trained in two stages. During the fist stage, weakly labeled

data is used for training with an objective of predicting the label at

clip level. Unlabeled in-domain data is labeled using the first trained

model and is used in the second stage of training. Training progress

is monitored using a held-out validation set. During the first stage of

training 20% of the weakly labeled data is used as the validation set

and during the second stage of training, the entirety of the weakly

labeled data is used as the validation set. 64 dimensional log Mel-

band magnitudes are used as input features and the whole sound

clip is given as the input to the CRNN which uses 2-D convolution

in time and frequency. During test time, strong labels are assigned

based on the posterior probabilities and smoothed using a median

filter of length 1s. Performance of the baseline system is given in

Table 1.

3.4. Classification results

The classification results for the test set of the development dataset

are shown in Table 1. In System 1, the event labels are predicted us-

ing a CRNN trained using only the weakly labeled data. In System

2, CRNN is trained using weakly labeled data (1,578 clips) and aug-

mented data (1,080 clips) which are generated by mixing multiple

weakly labeled clips. System 3 uses predictions from the DCASE

2018 baseline model for Task4. Ensemble system uses majority

vote on predictions from Systems 1-3. As seen in the table, the

ensemble system achieves the best performance. Class-wise perfor-

mance is shown in Table 2.

Table 2: Class-wise F-score

Class Baseline Ensemble

Alarm/Bell/Ringing 5.0 34.9

Blender 17.8 20.3

Cat 0.0 31.2

Dishes 0.0 17.8

Dog 0.0 48.1

Electric shaver/toothbrush 35.1 22.6

Frying 29.4 10.5

Running water 10.3 33.3

Speech 0.0 36.2

Vacuum cleaner 51.1 45.5

4. CONCLUSION

In this work, we propose a segmentation and recognition method for

sound event detection based on unsupervised and semi-supervised

methods. This method combines the acoustic-driven event bound-

ary detection and the supervised acoustic event classification to

annotate sound events in complex acoustic scenes. The proposed

method makes use of unlabeled data enabling large-scale acoustic

event detection. Experiments on the DCASE challenge 2018 dataset

showed that the proposed method outperforms the baseline system

and it achieves 30.05% in the event-based macro average metric.
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