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ABSTRACT

In this technical report, we present our approach used for the CP-
JKU submission in Task 4 of the DCASE-2018 Challenge. We pro-
pose a novel iterative knowledge distillation technique for weakly-
labeled semi-supervised event detection using neural networks,
specifically Recurrent Convolutional Neural Networks (R-CNNs).
R-CNNs are used to tag the unlabeled data and predict strong la-
bels. Further, we use the R-CNN strong pseudo-labels on the train-
ing datasets and train new models after applying label-smoothing
techniques on the strong pseudo-labels. Our proposed approach sig-
nificantly improved the performance of the baseline, achieving the
event-based f-measure of 40.86% compared to 15.11% event-based
f-measure of the baseline in the provided test set from the develop-
ment dataset.

Index Terms— Weakly-labeled, Semi-supervised, Knowledge
Distillation, Recurrent Neural Network, Convolutional Neural Net-
work

1. INTRODUCTION

Motivated by the release of Audioset [1], the task of predicting
strong labels using models trained on weakly-labeled audio data
was introduced in the DCASE-2017 challenge (task 4) [2]. How-
ever, in DCASE-2018, the task has changed and transformed into a
semi-supervised task which adds another dimension of complexity
to this challenge. By leaving the majority of the training data unla-
beled [3], the organizers motivated the participants to leverage the
large sets of unlabeled data in a semi-supervised manner in order
to improve the performance of their systems. Another important
change compared to DCASE-2017 is the evaluation metric, that is
changed from segment-based evaluation to event based evaluation.
In DCASE-2018 task4, the submissions will be evaluated by the
macro average of class-wise event-based F1-scores (explained in
Section 3.3). The new evaluation metric introduces new challenges
to the task, since the systems need to predict the onsets and off-
sets of the events very accurately. In other word, unlike DCASE-
2017, events that are partially detected – with inaccurate onsets and
offsets– do not improve the performance based on the new evalu-
ation metric, but rather worsen it, as it will get evaluated as both
a false positive and a false negative [3]. In this paper, we propose
a novel approach to overcome the difficulties of this new task by
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leveraging the unlabeled data via an iterative knowledge distilla-
tion in neural networks. We show that using our method, the per-
formance of a Convolutional Recurrent Neural Network (R-CNN)
can be significant improved. We provide experimental results on
DCASE-2018 task 4 dataset and compare it with the baselines we
used.

2. THE PROPOSED APPROACH

In this section, we detail the key components of our proposed itera-
tive knowledge distillation method.

2.1. Proposed Approach for Audio Tagging

We train an R-CNN on the weakly-labeled dataset and predicted
pseudo-weak-labels for both in-domain and out-of-domain sets. Ta-
ble 2 shows the configuration of the layers of the model.

2.2. The Proposed Approach for Strong Label Prediction

We follow a multi-pass strategy to get our final predictions, by it-
eratively predicting pseudo-strong-labels for the labeled, in-domain
and out-of-domain sets, and retraining new models on those new
predictions.

2.2.1. The First Pass

We trained a recurrent convolutional neural network with the same
architecture that was used for tagging (Table 2). However, the net-
work is not only trained on the provided labels of the labeled set,
but also on the predicted pseudo labels for both the in-domain and
out-of-domain sets. The result of the first pass are strong labels
for the labeled, in-domain and out-of-domain sets. These labels are
presented in the form of frame-level probabilities for every audio
clip.

2.2.2. The Second Pass

In the second pass, we smooth the current predicted pseudo-strong
labels using median/Gaussian filters and we train new models on
them. We observed that the performance of the models varies
among different classes. We achieved better performances in some
classes using a deep model (Table 2), while for other classes shal-
low models (Table 3) performed better. In addition, using median
smoothing with or without Gaussian smoothing resulted in varying
performances for different classes.
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Table 1: F-score results per class for each submission. The average is calculated class-wise (macro-average) [4].
Submission. Average Alarm Blender Cat Dishes Dog Electric.. Frying Runnin.. Speech Vacuum..
Baseline 15.11 3.8 12.2 1.6 0.0 3.8 36.7 34.4 10.2 0.0 48.4
Koutini JKU task4 1 40.86 49.3 40.0 50.0 18.1 25.7 44.1 43.5 31.0 49.9 57.1
Koutini JKU task4 2 40.23 49.3 39.6 50.0 18.1 25.7 44.1 41.7 30.4 49.0 54.5
Koutini JKU task4 3 39.26 49.3 39.6 49.4 17.8 25.5 41.9 38.5 29.8 48.4 52.3
Koutini JKU task4 4 35.63 47.9 37.3 47.9 14.5 23.9 35.8 36.1 26.7 46.0 40.3

Figure 1: Example of strong predictions before/after smoothing.

2.2.3. Model selection

We train multiple models with/without smoothing. Then, we select
the best trained model for each class to predict new pseudo-strong-
labels for the respected class for the labeled, in-domain and out-of-
domain sets. Using these new prediction, we iteratively repeated
the second pass (Figure 2).

2.2.4. Smoothing for Strong Prediction

The strong predictions of our models trained only on weakly-
labeled data tend to be noisy. Therefore, we smooth those predic-
tions using median and Gaussian filters (Figure 1). We then use
these smoothed probabilities for retraining the network in the next
pass as explained in Section 2.2.

3. EXPERIMENTS AND RESULTS

3.1. Dataset

The dataset is split into a training set, a test set and an evaluation
set [3]. The training set contains three subsets, a labeled set, an
unlabeled-in-domain set and an unlabeled-out-of-domain set. In
this paper, they are referred to as labeled, in-domain, out-of-domain
respectively. The test set contains 288 strongly labeled audio clips.

Figure 2: The proposed knowledge distillation framework for RC-
NNs.

The evaluation set consist of 880 audio clips, for which our system
predicted strong labels for the challenge submission.

3.2. Features Extraction

We use log-scaled Mel-bands spectrograms as an input for all our
models. We extracted 64 Mel bands from 64 ms frames with 22.5
ms overlap using Librosa [5]. That resulted in an input size of 240
× 64 for our models.

3.3. Evaluation Metric

The evaluation metric for the task is the event-based F-score [4].
The predicted events are compared with a reference event list, by
comparing the onset and the offset of the predicted event with the
overlapping reference event. The predicted event is considered cor-
rectly detected (true positive), if it’s onset is within 200 ms collar
of the reference event onset and its offset is within 200 ms or 20%
of the event length collar around the reference offset. If a reference
event has no matching predicted event, it is considered a false neg-
ative. If the predicted event doesn’t match any reference event, it
is considered a false positive. Furthermore, if the system partially
predicted an event without accurately detecting its onset and offset,
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Table 2: Proposed deep architecture for predicting strong labels
and audio tagging. BN: Batch normalization, BIAS: Model uses
bias with no batch normalization, ReLu: Rectified Linear activation
function

Input 240 × 64
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu

1 × 2 Max-Pooling
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu

1 × 2 Max-Pooling
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu

1 × 2 Max-Pooling
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu
2 × 2 Conv(pad-1, stride-1)-64-BN-ReLu

1 × 2 Max-Pooling
1 × 1 Conv(pad-1, stride-1)-256-BIAS-ReLu

1 × 4 Max-Pooling
Bi-directional SRU 128 hidden units

1 × 1 Conv(pad-1, stride-1)-10-BIAS-Sigmoid
Output 240 × 10

(Strong predictions) (Weak-label training and tagging)
Output 240 × 10 Global-Average-Pooling

Output 10

it will be penalized twice, as a false positive and a false negative.
Equation (1) shows the calculation of the F-score for each class [3].

Fc =
2.TPc

2.TPc + FPc + FNc
, (1)

Where Fc, TPc, FPc, FNc are the F-score, true positives, false
positives, false negatives of the class c respectively. The final eval-
uation metric the average of the F-score for all the classes.

3.4. Results

We did 4 final submissions for the challenge using the probabili-
ties of the same system. However, the submission are different in
the final smoothing window length and the thresholds which were
selected based on the results on the validation set.

Table 1 shows the class-wise F-score results for all the 4 sub-
mitted systems compared to those of the baseline system.

Table 4 shows the final macro-averaged event-based evaluation
results on the test set compared to the baseline system.
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