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ABSTRACT

In this technical report, we propose a sub-band convolution neural
network with residual building blocks as a sound event detection
system. Our system performs not only the clip-wise prediction of
the task 5 but also the frame-wise prediction, which can be regarded
as multi-task learning. The frame-wise labels are all transformed
from the original weak labels by label smoothing with the energy
of the frames. With the multi-task learning, we believe such frame-
wise prediction can concentrate on the most important part from the
weakly-labeled dataset. In addition, we attempted to preprocess the
input signals by array-based methods and, depending on the sound
classes, mixed results are reported in terms of the F1-score.

Index Terms— Sound event classification, audio classification,
convolutional neural network, array signal processing

1. INTRODUCTION

Sound event detection and classification becomes a more and more
popular topic due to its wide application such as home security sys-
tem, multimedia auto-tagging, acoustic ecology, and so on. For
most of the tasks in this field, systems need to be developed without
precise annotations of the duration of sound events because the cost
of collecting a dataset with strong labels is relative high.

In recent years, deep learning has achieved unprecedented suc-
cess in several classification tasks, including acoustic classification.
Convolutional neural networks (CNNs) show its good performance
in both image [1, 2] and audio classification [3, 4]. However, pre-
vious studies argued that some differences between the audio clas-
sification on the spectrogram and object classification on the image
should be considered. Using small filters in CNNs is common for
image classification, which introduces a translation invariance prop-
erty. Unlike the images, the two dimensions of spectrograms rep-
resent time and frequency, respectively. The invariant property in
frequency domain may consequently be undesirable [5]. Motivated
by the meanings of the time-frequency features, some works choose
wider or higher filters to learn the temporal feature or frequency se-
lective feature [6, 7]. In our proposed model, the layers in the early
stage convolve sub-band features individually. This prevents the
learned filters from being shared by low frequency and high fre-
quency, and also increases the capacity of learning compared with
the wider filters or higher filters.

One specific challenge for using weak labeling dataset is that
the system does not know the exact time interval of the sound
events. One strategy is to use global max-pooling (GMP) after the

convolution layer. Based on the feature map generated by GMP, the
final classification can be determined on the most probable location
in images [8]. This strategy was also used in the sound event detec-
tion [9]. From the perspective of spectro-temporal “localization”,
some studies utilized attention modules to locate the sound event in
the Mel-spectrogram [10, 11]. In our system, such architecture is
also implemented in the final predicting stage.

Beside the weak labels, multi-channel recordings in the dataset
of the task [12] provide the extra information that should be use-
ful for classification. Since the geometry of the microphone arrays
is known, we decide to enhance signal to noise ratio (SNR) by the
array beamforming method. We adopt the minimum power distor-
tionless response (MPDR) method [13] and the minimum variance
distortionless response (MVDR) method, respectively,[14] to locate
the source direction of arrival and enhance the source signal.

2. PROPOSED METHOD

2.1. Source direction localization

The MPDR algorithm is a beamformer-based method, and a beam-
former can be regarded as a linear combiner of weighted micro-
phone signals to yield the array output signals. The MPDR algo-
rithm attempts to minimize the array output power, while maintain-
ing a fixed gain in the look direction. The idea can be expressed as
to find the vector w as follows,

min
w

wHRxxw s.t.wHa(θ) = 1, (1)

where w is the array weighting vector, θ is the look direction,
Rxx = E{ppH}, and a = [e−jkκ·r1 , ..., e−jkκ·r4 ]T is the steer-
ing vector, k is the wave number, κ denotes the unit wave vector
pointing at the look direction, rm is the position vector of the mth
microphone, p is the sound pressure vector received by the micro-
phones, and Rxx is the source signal correlation matrix. Solving
by the Lagrange multiplier method, we could obtain the following
optimal weight vector,

wMPDR =
R−1

xx a(θ)

a(θ)HR−1
xx a(θ)

. (2)

In addition, the array output power, or the so-called MPDR spec-
trum, is given by

SMPDR(θ) =
1

a(θ)HR−1
xx a(θ)

, (3)
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and the peak of the MPDR spectrum corresponds to the source di-
rection.

Once the source is located, the source signal can be extracted
by the beamforming method. A beamformer is a spatial filter that
operates on the outputs of an array of microphones in order to en-
hance the desired signal coming from one direction while suppress-
ing noise and interference from other directions. The array output
can be written as y = wHp. The optimum MVDR weighting to
the beamformer is

wMVDR =
R−1

vv a(θ0)

a(θ0)HR−1
vv a(θ0)

, (4)

where Rvv(p, q) = sinc(krpq) is the noise correlation matrix, and
an isotropic noise field distributed uniformly from all possible di-
rections is assumed; rpq is the distance between the pth array el-
ement and the qth array element, and θ0 is the source direction.
After source signal is extracted by MVDR beamformer, the back-
ground noise could be further reduced by a Bayesian minimum
mean-square-error (MMSE) postfilter [15, 16].

2.2. Sub-band convolution

To implement the sub-band convolution, the time-frequency feature
S needs to be split intoK sub-band featuresSi, i = 0, 1, ...,K−1.
Assume the number of frequency bins and frames are N and M ,
respectively. Sn,m denoted the magnitude of nth frequency bin at
mth frame. The kth sub-band feature is defined as,

Sk = {Sn,m |
⌊
Nk

K

⌋
≤ n <

⌊
N(k + 1)

K

⌋
and 0 ≤ m < M}.

(5)
Each Sk is a 2D feature with shape (

⌊
N
K

⌋
,m). A sub-band feature

is fed into a 2D convolution layer of which the filter size and stride
size in frequency axis are equal to

⌊
N
K

⌋
. Therefore, the frequency

length of output decreases to 1. The total outputs from K convolu-
tion layer can be concatenated as a 2D feature and so the sub-band
convolution is performed repetitively until the number of frequency
bin decreases to 1.

Sub-band convolution prevents the pitch invariant property
among the sub-band features because the learned kernels are not
shared with one another. Nevertheless, the relation of the neighbor
sub-band features is still established by the next sub-band convolu-
tion. Therefore, if one sound event has a pitch invariant property,
this property can also be learned by a deeper sub-convolution layer.

The implement of sub-convolution is similar to grouped con-
volution [17]. However, grouped convolution refers to dividing the
features into several groups in the dimension of channels instead of
frequency. The aim of grouped convolution is to regularize for the
connections among the channels.

2.3. Temporal convolution with residual connection

Residual connection [18] is considered an efficient way to train a
deep neural network. Residual connection can be expressed as,

y = F(x) + x, (6)

where x and y denote the input and output feature of the layers.
F can be any kind of neural network architecture. Networks with
residual connections can be interpreted as ensembles [19]. In [20],
a relative shallow residual network is proposed by increasing the

(a) Identity mapping shortcut path (b) Max-pooling shortcut path

Figure 1: Two types of building block, where k denotes the de-
sired number of output channels and (m,n) denotes the shape of
the kernel size. The main convolution on time-frequency is per-
formed in the second convolution layer with desired kernel size.
Left: the residual connection in the building block is identity map-
ping. Right: a max-pooling layer is in the residual connection be-
cause the dimension of the output from the convolution path and the
dimension of input feature are different.

number of feature maps. In this report, we develop a residual build-
ing block for learning the temporal features. As depicted in Fig. 1,
the building block contains one identity path and one convolution
path. In the convolution path, the first convolution layer projects the
input feature to a relative low dimension (the number of channels)
by a factor. The factor is equal to 4 in our present implementation.
Then the low dimension feature is convolved in temporal axes in the
second layer with the desired kernel size. The final layer projects
the convolved feature to high dimension. If the number of output
channels is different to the input channels, the second convolution
is performed with strides, and the identity path is replaced with a
max-pooling layer with the same strides size. The detail of the pa-
rameters are discussed in Sec. 3.

2.4. Frame-wise prediction with label smoothing

The proposed system includes a specific branch to predict the sound
event in a frame-wise manner by adding several transpose convolu-
tion layers [9]. Instead of using the weak label as the frame-wise
label, the frame-wise labels are derived from smoothing the weak
label by the frame energy. The energy E at frame m is defined as,

Ê(m) =

N∑
i=1

Si,m, (7)

E(m) =
Ê(m)

maxmÊ(m)
. (8)

From our observations, some of the recordings are dominated by
silence or background. Only few second contains the information
of the labeled acoustic event. Therefore, we can smooth the label
in a meaningful way under the assumption that the energy of the
informative frame is relative higher. Denote the weak label vector,
for the entire clip, as a one-hot encoded vector b ∈ {0, 1}C for C
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classes. Then, the frame-wise label b(m) is defined as follows,

b(m) =

(
E(m) +

1− E(m)

C

)
b. (9)

If E(m) is close to 0, it indicates this frame is silence or low-level
background noise more possibly and thus the frame-wise label is
also close to 0. Conversely, the frame-wise label is equal to the
weak label when the frame has the highest energy. The underlying
hypothesis is that the frame-wise prediction by this labeling strategy
can help our model to learn the most important part in one record-
ing. Note that we regard the new frame-wise label as the probability
of C acoustic events in each frame. We calculate cross entropy cost
with sigmoid function instead of softmax function.

3. EXPERIMENTS AND RESULTS

3.1. Data preprocessing and augmentation

Mel spectrogram is used as the input feature of the neural network,
which corresponds to 64 Mel-bank filters, 40 ms frame size and
20 ms hop size. The 4 channels are processed in 3 different ways:
convolved directly, enhanced by MVDR and enhanced by MVDR-
MMSE. Convolved directly means the Mel-spectrograms of 4 chan-
nels is the input of the neural network. The characteristics between
the channels are learned by the model directly. Enhanced by MVDR
and MVDR-MMSE means each audio is enhanced by the methods
mentioned in 2.1. The comparison of the results from the three ways
is discussed in the next section and the they correspond to our sys-
tem 1-3. The frame energy is calculated by the Mel-spectrogram
and the input features for the neural network are logarithmic.

We also use data augmentation to make our system more gen-
eral. For each batch of training data, the Mel-spectrogram is shifted
n frames through the time axis, where n is an random integer rang-
ing from −100 to 100. When n > 0 the Mel-spectorgram is right
shifted n frames and the last frames are shifted to the first frames;
When n < 0 the Mel-spectorgram is left shifted n frames and the
last frames are shifted to the first frames.

3.2. Framework

The framework of our model is depicted in Fig. 2. We opt Selu [21]
as the activation functions except for the final layer. Three sub-band
convolution layers are in the beginning of our model. This part of
architecture aims to learn the characteristic within a short duration
and the corresponding frequency band. Furthermore, 4 channels
are considered in this part to capture the spatial cue for each class.
The dimension of feature is reduced to (1, 125, 32). After the sub-
band convolution layers, the temporal feature is learned by 4 resid-
ual building blocks. Note that the convolutions with strides are only
performed for the first, the third and the fourth building blocks due
to the incremental number of filters. To capture the most impor-
tant temporal feature, three different methods of temporal pooling
are used: maximum, average and variance [9]. The final output is
determined after 2 fully connected layers.

Our system also learns frame-wise prediction at the same time.
As the model introduced by [9], one new branch is added in our
model. This branch consists of 4 transposed convolution layer to
restore the frame-level feature. At the final layer of this branch,
a 2D convolution layer collaborates with an attention architecture
[22] to do the frame-wise prediction.

3.3. Training setups

As the reason mentioned in section 2.4, we choose the cross entropy
with sigmoid function when training the model. For the evaluation,
the output with the highest probability is selected as the detected
sound event in each recording. The model is trained by the Adam
optimizer [23] in 400 epochs and the final model is the one with
the best macro-averaged F1-score. Due to the imbalance in the de-
velopment dataset, an epoch of training data is derived from sub-
sampling the whole training data. The sub-sampling set is formed
by randomly choosingD samples in each class, whereD is equal to
the number of samples with the rarest class in the training dataset.
Under the developing mode, the provided 4-fold cross-validation is
used for determining the training set and the testing set. We split
the training set into the validation set and the training set with the
ratio 1:4. In the evaluation mode, 4 models are trained by the 4
fold cross-validation set provided by official, and the answer of the
evaluation set is voted by the 4 models. Note that we only use the
outputs from the clip-wise prediction of the 4 models to determine
the final answer. A good way to use the frame-wise predictions is a
potential future work.

3.4. Results and discussion

To evaluate the designed model, we tested the model by macro-
averaged F1-score for the 4 folds in evaluation mode. The results
over 4 folds are listed in tables 1. The overall average macro-
averaged F1 scores are 88.7%, 87.1% and 85.5%, respectively. We
are surprised that the lowest score is from MMSE-MVDR. The
reason is possibly that, although the recording can be heard more
clearly after MMSE, it also discards some important features that
are crucial for the classification. It might imply that sometimes
a better hearing quality may be not really better for classification.
This conclusion differs from our previous report for DCASE 2016
task 3, in which a support vector machine classifier was developed
for frame-wise event recognition [24].

System 1 System 2 System 3
Absence 89.2% 90.3% 90.1%
Cooking 96.5% 92.3% 89.6%
Dishwashing 83.9% 78.3% 73.8%
Eating 90.1% 88.2% 85.8%
Other 59.0% 54.6% 52.4%
Social activity 94.1% 94.6% 93.1%
Vacuum cleaning 99.9% 99.8% 99.5%
Watching TV 99.3% 99.6% 99.1%
Working 86.6% 86.3% 86.2%
Average 88.7% 87.1% 85.5%

Table 1: The summary of macro-averaged F1 scores from each sys-
tem.

Compared to the baseline system, the average scores of our sys-
tems are about 1 to 4% higher than the baseline system. In the 9
sound event classes, the ”other” is noticeably the worst case. We
speculate that the fairly poor performance of ”other” are due to two
factors. First, the dataset is highly imbalanced. The numbers of
samples for ”absence” (18860), ”Working” (18644) and ”watch-
ing TV” (18648) is much larger than the number of samples for
”other” (2060). Furthermore, the difference between the definitions
of ”other” and ”absence” depends on that whether the human is in
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Figure 2: The framework of the model, where “building block” is mentioned in 2.3, “FC” means fully connected layer, “conv” means
convolutional layer and “trans conv” means transposed convolutional layer. The tuple on top of each convolution layer means the dimension
of the output feature (height, width, channels).

the living room. It does not depends on the characteristic of sound
event. Therefore, the detection ”other” is prone to confusion with
the rest of sound event classes.
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