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ABSTRACT 

This paper presents several feature extraction and normal-
ization methods implemented for the DCASE 2018 Bird 
Audio Detection challenge, a binary audio classification 
task to identify whether a ten second audio segment from 
a specified dataset contains one or more bird vocaliza-
tions. Our baseline system is adapted from the Convolu-
tional Neural Network system of last year’s challenge 
winner bulbul [1]. We introduce one feature modification, 
an increase in temporal resolution of the Mel-spectrogram 
feature matrix, tailored to the fast-changing temporal 
structure of many song-bird vocalizations. Additionally, 
we introduce two feature normalization approaches, a 
front-end signal enhancement method to reduce differ-
ences in dataset noise characteristics and an explicit do-
main adaptation method based on covariance normaliza-
tion. Overall results show that none of these approaches 
gave significant improvements for either a within-dataset 
training/testing paradigm or a cross-dataset train-
ing/testing paradigm. 
 

Index Terms— audio classification, convolutional 
neural network, bioacoustic vocalization analysis, domain 
adaptation 

1. INTRODUCTION 

The DCASE 2018 Bird Audio Detection Challenge 
(BADC, DCASE 2018 Challenge Task 3) [2] is a binary 
audio classification task to determine whether a fixed-
length ten second audio segment contains one or more bird 
vocalizations across a wide variety of bird species and 
background noise environments.  This year’s task focuses 
on the challenging problem of domain adaptation, with the 
evaluation audio segments to be classified identified as 
coming from one of three different evaluation datasets, one 
of which is represented in the training data and two of 
which are not. This problem of dataset adaptation, also 
referred to as domain adaptation, domain shift, domain 
transfer, or dataset bias, is of great interest in a number of 
domains such as image and audio classification. In particu 

lar, the increased success of deep-learning based ap-
proaches requiring large amounts of training data have led 
to an interest in how to adapt existing well-trained models 
to new, smaller datasets. 

The particular domain of the BADC is that of bioa-
coustics signal processing and analysis. Bioacoustics fo-
cuses on the analysis of animal sounds across many spe-
cies, sound production mechanisms, and signaling purpos-
es. Currently bioacoustics research often requires exten-
sive amounts of manual labor for segmentation, detection 
and labeling of voice activity from hours of field record-
ings [3], and because of this automated analysis of bioa-
coustics data can be a powerful noninvasive and economi-
cal tool for monitoring the diversity, migration patterns [4] 
and ecosystem health [5] of vocally active animal species.  
In recent years, speech processing and machine learning 
techniques from human speech processing techniques have 
begun to be used to study animal communication for de-
tection and classification, with applications to censusing 
[6], understanding the effect of noise on animal communi-
cation [7], and other areas of acoustic ecology and etholo-
gy. 

The emphasis of the BADC is to develop a highly gen-
eralizable and robust bird classification task that is robust 
across species and acoustic environments. Although it has 
been titled as a detection problem, it is not “detection” in 
the sense of typical bioacoustics terminology because it 
does not involve locating the start and end points of the 
bird vocalizations within each vocalization. The results of 
the challenge, however, may lead to beneficial machine 
learning methods across a variety of different bioacoustics 
tasks, including detection, classification, localization, and 
others.  

Our team’s submission for the BADC is based on a 
Convolutional Neural Network (CNN) structure adapted 
from the baseline architecture of last year’s challenge bul-
bul [1]. Nearly all of the top performers of last year’s chal-
lenge were based on a similar structure, using pre-
processed time-frequency features such as Mel-frequency 
spectrogram or cepstral features as input to a CNN archi-
tecture. Using this approach as a baseline, we have intro-
duced three specific modifications to the front-end feature 
processing methods.  
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The first of these is adjustment of the time and fre-
quency resolution, which was fairly consistent across 
many of last year’s challenge submissions.  The idea be-
hind this change, described in more detail in Section 4.1, is 
that the variations in the vocalizations of many bird spe-
cies, especially passerines (songbirds), have a much finer 
spectral and/or temporal structure than human speech. 

The second modification, described in Section 4.2, is 
the introduction of acoustic signal enhancement, specifi-
cally Log-Spectral Amplitude (LSA) estimation combined 
with Iterative Minimal Controlled Recursive Averaging 
(IMCRA). The idea behind this is not simply for signal 
enhancement, which does not typically give improvement 
to neural-network based speech or audio classification 
systems, but instead as a type of dataset normalization 
intended to decrease the differences between the back-
ground noise characteristics of the different datasets. 

The third modification, described in Section 4.3, is an 
explicit domain adaptation technique that does a source-
target covariance transform to the underlying features for 
an input vocalization as a function of which dataset it is 
from. 

This paper is organized as follows: in the next section a 
brief description of data used for training and testing the 
neural network is provided. Section 3 gives an overview of 
the baseline system, and section 4 introduces each of the 
improvements that were implemented to the baseline sys-
tem in further detail. Section 5 gives results and discussion 
followed by conclusion in Section 6. 

2. DATA 

The data provided for the challenge consists of audio re-
cordings from three development datasets and three evalu-
ation datasets which are normalized in amplitude, saved as 
a 16-bit single channel PCM at a 44.1kHz sampling fre-
quency [2]. Each development dataset has a metadata file 
associated with it, with a binary label to mark bird pres-
ence or absence. The labels are manually annotated by 
visual analysis of the spectrograms and listening to the 
audio clips, resulting in a small number of mislabeled files.  

The development datasets include Birdvox_20k, 
Warblr10k and Freefield1010. The Birdvox_20k dataset 
was recorded during autumn 2015 in Ithaca, NY, USA as 
part of a bioacoustics monitoring project. About half of the 
20000 files contain at least one bird vocalization [8]. The 
Birdvox_20k dataset was originally recorded at a 24kHz 
sampling rate which was resampled to a 44.1kHz sampling 
rate to match the other challenge datasets, and therefore 
contains no content above 12kHz.  

The Warblr10k dataset consists of 8000 audio clips 
recorded using smartphones, crowdsourced by users of 
Warblr app in the United Kingdom, with 75.6% of the 
recordings labeled for bird presence. The Freefield1010 
dataset [9] consists of 7690 audio segments derived from 

files with the field-recording tag in the Freesound 
crowdsourced global audio archive, with about 25% of 
dataset labeled as having one or more birds present. 

The evaluation data includes 2000 files from 
Warblr10k, 6620 files from Chernobyl, and 4000 files 
from PolandNFC.  The Chernobyl dataset was collected 
from the Chernobyl Exclusion Zone as a part of the Trans-
fer Exposure Effects (TREE) project to study the long-
term effects of the Chernobyl accident on ecology. The 
PolandNFC dataset was collected along the Baltic coast of 
Poland during autumn of 2016. In addition, there was a 
randomly selected smaller subset of the Warblr10k and 
Chernobyl (but not PolandNFC) evaluation datasets con-
sisting of approximately 1000 files used for posting ongo-
ing results on the challenge leaderboard.  We refer to this 
as the Leaderboard Evaluation dataset and all testing re-
sults in this paper are on this dataset unless otherwise 
specified. Results are given as Area under the Curve 
(AUC) of the Receiver Operating Characteristic curve of 
the submitted prediction probabilities. 

Each dataset has unique characteristics in terms of am-
bient background noise, species present in the recordings, 
and variety of non-avian interfering sound sources. 
Warblr, the only dataset present in both training and eval-
uation sets, and Freefield are crowd-sourced and therefore 
represent a much wider range of background sound 
sources, but are also the both from the UK and therefore 
have many overlapping species. All three of the other da-
tasets are remote monitoring data with internal consistency 
across species and conditions, but vary widely in location 
and habitat. 

It should also be noted that all five of these datasets 
contain a large number and wide range of bird species that 
includes both passerine and non-passerine species.  Passer-
ine vocalizations tend to have distinct song-like patterns 
moving around a single or dual frequency (due to the dual-
frequency action of the syrinx sound production mecha-
nism), while non-passerine vocalizations are often broad-
band with unique spectral characteristics.  Thus, the binary 
task of classifying whether one or more bird calls is pre-
sent or non-present inherently represents recognition and 
classification of many different sound event characteris-
tics. 

3. BASELINE SYSTEM 

The baseline CNN system was modeled after the baseline 
architecture of last year’s challenge bulbul [1] architecture 
as distributed by the challenge organizers. This is a feed 
forward 2D Convolutional Neural Network with four 2D 
CNN layers followed by three dense layers, as shown in 
detail in Figure 1. The neural network was trained using 
the log Mel filter bank energy features extracted from 
small frames of each audio signal. Vocalizations are divid-
ed into 46ms frames using a Hamming window function, 
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with a step size of 14ms, yielding an overlap of 70% 
across frames. A Fast Fourier Transform is computed, and 
then Mel filter banks with 80 bands are calculated across a 
frequency range from 50Hz to 12kHz. The logarithm of 
the normalized sum magnitude of the filter bank energies 
is computed for each window. These features were nor-
malized to range between 0 and 1 before feeding to the 
network input. 

Figure 1: Baseline network architecture 

A batch normalization layer along with dropout layers 
were employed in the neural network for improved regu-
larization. The dropout layer has a dropout rate of 0.5. The 
network also uses L2 layer at the end of CNN layers with a 
regularization parameter of 0.01. For training, ADAM 
optimizer is used with an initial learning rate of 0.001. The 
learning rate was reduced by a factor of 0.2 if there was no 
improvement in validation accuracy over five consecutive 
epochs. The network is trained on binary cross entropy 
loss using accuracy as a metric. Intermediate activation 
layers were leaky RELU with a final prediction probability 
output computed using a sigmoid activation function. 
Training was done on batches of 16 audio samples over 30 
to 40 epochs. Optional data augmentation was built into 
the system, using a simple cyclic pitch and time shifting 
approach. For this, the pitch shift was limited to 5% but 
cyclic time shift could be as much as 90%. 

Experiments were conducted both within individual 
datasets and across datasets using the developmental da-
tasets. Since the number of positive examples varies within 
each dataset, the selection of positive and negative exam-

ples was equalized using class weights to avoid a mis-
match in class representations. The dataset organization 
used for the experiments is given in Table 1 and Table 2. 

For testing on the final evaluation dataset, the network 
was trained on all three development datasets, 
Birdvox_20k, Warblr10k and Freefiled1010, combined. 
The datasets were shuffled, so that the network is unaf-
fected by the sequence in which examples are presented to 
it. Since the number of examples in Freefield1010 and 
Warblr10k datasets is almost equal, the class imbalance 
evens out, so equal weights are assigned to positive and 
negative examples. The development dataset is split into 
33905 training examples (95%) and 1784 validation ex-
amples (0.05%). The test dataset consists of the complete 
evaluation dataset having 12620 examples; 6620 from 
Chernobyl, 2000 from warblr10k-eval and 4000 from Po-
landNFC dataset. 

Table 1: Within dataset experiments 

Dataset Train 
(80%) 

Test 
(0.15%) 

Validation 
(.05%) 

Birdvox_20k 16000 3000 1000 
Freefiled1010 6152 1153 385 

Warblr10k 6400 1200 400 

Table 2: Cross dataset experiments 

Training datasets 
(84% training and 
16% validation) 

Test dataset Class weights 
 
   -ve          +ve 

BirdVox+ freefield Warblr   43%         57% 
Freefield + warblr BirdVox   50%         50% 
BirdVox + Warblr freefield   57%         43% 

4. PROPOSED IMPROVEMENTS AND RESULTS 

4.1. Temporal and frequency resolution  

Most bioacoustics signals are nonstationary, like human 
speech, with changing frequency content over time. 
Choosing the frame length is a tradeoff between spectral 
and temporal resolution, with a long frame yielding better 
spectral resolution but poorer temporal resolution, and vice 
versa. Bird vocalizations, especially passerine songs, typi-
cally have higher frequencies and very fast temporal pat-
terns compared to human speech, with modulations as fast 
as a few milliseconds [10]. Most of the previous challenge 
systems, including the baseline bulbul system, have a win-
dow size that is relatively long for typical song-bird vocal-
izations, which would prevent feature representation of 
small time-scale modulations and transients.  

To investigate this, we experimented with changing 
both the temporal resolution by varying the step and win-
dow sizes, as well as changing the frequency resolution by 
varying the number of filter banks. The high temporal res-

Input - 700x80x1 
Convolution (3x3) - 698x78x16 

Pool (3x3) - 232x26x16 
Convolution (3x3) - 230x24x16 

Pool (3x3) - 76x8x16 
Convolution (3x3) - 74x6x16 

Pool (3x1) - 24x6x16 
Convolution (3x3) - 22x4x16 

Pool (3x1)- 7x4x16 
Dense (256) - 256 
Dense (32) - 32 

Dense (1) - 1 
 

Decision 
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olution condition used a window size of 12ms with 80 
Mel-spaced filter banks (dimension 1669x80), while the 
high spectral resolution condition used a window size of 
32ms along with 160 Mel-spaced filter banks (dimension 
624x160). Leaderboard Evaluation results, shown in Table 
3 below, indicate that the increased temporal resolution 
has little impact while the increased spectral resolution has 
a negative impact. 

Table 3: Temporal and spectral resolution results 

 AUC Acc 
Baseline (B) 86.83 0.89 
High-res temporal (HT) 86.43 0.90 
High-res frequency (HF) 83.54 0.89 

4.2. Signal enhancement 

In noisy environments, anthropogenic noise and adverse 
causes may mask bird song, especially the notes occurring 
at lower frequencies. It has been observed that in urban 
environments, birds may modify their songs to low fre-
quency regions to minimize masking effect by anthropo-
genic noise [11]. Each of the datasets in the BADC has a 
unique set of background noise characteristics.  For with-
in-dataset experiments, this is not generally considered a 
problem because the neural network classifier internally 
models such noise characteristics, and adding enhance-
ment or other de-noising techniques rarely improves re-
sults.  However, our hypothesis for the cross-dataset con-
ditions of the BADC is that applying a front-end signal 
enhancement may increase similarity across datasets and 
allow the network to more easily generalize to new noise 
conditions. 

To investigate this problem, we used the Improved 
Controlled Recursive Algorithm (IMCRA) noise tracking 
approach with a log-spectral amplitude estimation tech-
nique as proposed by Cohen [12], to implement signal 
enhancement on all datasets.  Noise estimation is updated 
by averaging the past spectral power values using smooth-
ing parameters that are adjusted with the probability of 
target signal presence within sub bands. IMCRA includes 
two iterations of smoothing and minimum tracking. Dur-
ing the first iteration the signal presence probability is de-
tected in each frequency band, and in the second iteration 
the minimum tracking will be updated by smoothing pa-
rameter both in time and frequency domains. This was 
used with High Temporal features. Results, shown in Ta-
ble 4 below, show a small degradation to the results from 
this approach. 

Table 4: IMCRA-LSA Signal enhancement results 

 AUC Acc 
HT 86.43 0.90 
HT enhanced (HTE) 84.47 0.88 

4.3. Domain adaptation 

One of the primary issues with this challenge problem is 
the training/test mismatch. Since the datasets used in this 
challenge are from various sources, the test data is differ-
ent from training data. There have been a number of dif-
ferent methods suggested for domain adaptation in the 
image processing literature, to allow well-trained models 
to be quickly used on new smaller datasets. 

In this work we have implemented a domain adaptation 
method described in [13] which aligns the second order 
statistics of source dataset to the target dataset before train-
ing the neural network. This amounts to transforming the 
training input by whitening it and then re-coloring it with 
the covariance characteristic of a chosen target dataset. 
Although the choice of a target is arbitrary, since the 
Warblr10k dataset was present in both development and 
evaluation dataset, it was used as the target.  In the domain 
adaptation experiments, feature matrices from all other 
datasets were transformed to the covariance characteristic 
of the Warblr10k dataset before being applied to the net-
work. Results, shown in Table 5 below, again show little 
change to the results from this simple domain adaptation 
method. 

Table 5: Covariance normalizations results 

 AUC Acc 
Baseline (B) 86.83 0.89 
Covariance normalized (CN) 86.61 0.87 

4.4. Combined systems 

In addition to the individual modifications, several 
combined systems were implemented.  This includes com-
bining high-temporal resolution features with enhancement 
and covariance normalization, a score fusion system that 
consisted of a fully connected three-layer neural net using 
the second from the last layer of each of three individual 
networks (3 32x1 outputs), and several different combina-
tions of simple averaging. Results are shown in Table 6. 

Overall results show that none of these approaches 
gave significant improvements on the leaderboard evalua-
tion dataset. 

Table 6: Composite system results 

 AUC 
Baseline (B) 86.83 
Sequence HT→SE→CV 70.05 
Score fusion –  
Parallel B/HT/HF → 3 FC layers 

89.54 

Boosting (prediction averaging) 
{B, HT, HTE, CN, HF} 

89.94 

Boosting (weighted prediction averaging) 
{Fusion, B, HT, HF} 

90.25 
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