
Detection and Classification of Acoustic Scenes and Events 2018 Challenge

EXPLORING DEEP VISION MODELS FOR ACOUSTIC SCENE CLASSIFICATION

Technical Report

Octave Mariotti, Matthieu Cord, Olivier Schwander

Sorbonne Université, CNRS
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ABSTRACT

This report evaluates the application of deep vision models,
namely VGG and Resnet, to general audio recognition. In the
context of the IEEE AASP Challenge: Detection and Clas-
sification of Acoustic Scenes and Events 2018, we trained
several of these architecture on the task 1 dataset to perform
acoustic scene classification. Then, in order to produce more
robust predictions, we explored two ensemble methods to ag-
gregate the different model outputs. Our results show a final
accuracy of 79% on the development dataset, outperforming
the baseline by almost 20%.

Index Terms— Acoustic scene classification, DCASE
2018, Vision, VGG, Residual networks, Ensemble

1. INTRODUCTION

Despite remarkable improvement over the last decade in
computer vision, its neighbor field audio signal process-
ing seems to be lagging behind, a delay often attributed to
the lack of available labeled data to train deep networks.
Nonetheless, recent results show that if sufficient data is
provided, vision models seem to perform quite well in au-
dio classification tasks[1], implying that a transition towards
deeper models will soon occur.

Current state-of-the-art algorithm for acoustic scene clas-
sification rely on preprocessing audio signal to obtain a spec-
tral representation of the signal, and then training a convo-
lutional neural network to classify the data. There does not
seem to be a general consensus on which features are best, al-
though most commonly found are mel-spectrograms[2] and
Mel Frequency Cepstral Coefficients (MFCC)[3]. Other
popular features include standard or Constant-Q Transforms
spectrograms[4] or more complex constructions such as i-
vectors [5]. It should be noted that apart from regular and
CQT spectrograms, all other preprocessing are specifically
designed for music or speech processing, thus may introduce
bias in a general audio dataset.

Classification of these features is almost always per-
formed using CNNs whose architecture are loosely based
on VGG networks [2][4]. Variation exists, often including
recurrent layer to capture the temporal structure of audio
signal[6], and Support Vector Machines are sometimes used
to better classify high-level extracted features[4]. Models
rarely exceed ten layers.

In comparison, current vision models are often deeper
because image datasets contain much more examples.
Nonetheless, some network architectures, although deep, are
remarkably strong at avoiding overfitting, using regulariza-
tion layers such as dropout or batch normalization. We in-
tend to explore how these network behave on tasks they were
not directly designed for.

Ensemble methods are often used to obtain better predic-
tions either via direct methods like voting[6] or indirect, such
as fitting an auxiliary classifier[4].

Our contribution relies on testing models of different
depths and different structures in order to determine up to
how many layers can a model grow before overfitting, and
ensembling several of these models to benefit from different
levels of abstraction.

2. PREPROCESSING

The preprocessing of audio sample is based on the COCAI
DCASE 2017 submission[2], using several kind of log-mel
spectrograms. The mel-spectrograms were computed from
audio file converted from 24 to 16-bit encoding, with origi-
nal 48kHz sample rate. The window was 2,048 samples long
with a hop length of 1,024, for 128 mel bins. After convert-
ing the spectrograms to logarithmic scale, a final step of nor-
malization was performed, consisting in subtracting µ and
dividing each spectrogram by σ, where µ and σ are the av-
erage mean and standard deviation of spectrograms obtained
from the development dataset.

Four types of spectrograms were created and used to
train networks: Mono, Stereo, Mid / Side and Harmonic
/ Percussive. The mono preprocessing produces one mel-
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Figure 2: Architecture of VGG-inspired network

spectrogram per audio file, while the remaining three types
produce a pair.

A stereo pair consists in a spectrogram extracted from the
left (L) and right (R) channel respectively, and a mid/side
pair from L+R and L−R channels.

Harmonic / Percussive preprocessing also produces two
spectrograms, one containing harmonic features (or station-
ary frequencies) the other containing percussive features (or
transient frequencies). Harmonic Percussive Source Sepa-
ration (HPSS) first originated in music processing to isolate
other instruments from the drum sounds that often made sig-
nals harder to process[7]. The algorithm used to perform
HPSS was the median-based algorithm[8] from librosa au-
dio processing library with default parameters.

3. NETWORK ARCHITECTURES

We explored two kinds of network architectures inspired by
well-tested vision models : VGG and residual networks.

3.1. VGG

VGG networks[9] have a straightforward architecture, con-
sisting in a sequence of blocks containing two or three convo-
lution layers followed by max-pooling. Because of the pool-
ing layers, the spatial extent of the signal is reduced after
each block. Conversely, the number of channels increases,
allowing for more abstraction. We chose to limit the max-
imum number of channels to 512. After several of these
blocks, two fully-connected layers are used to classify fea-
tures.

Our architecture uses the same principle with two dis-
tinct features : regularization layer and global average pool-
ing (figure 2).

regularization layers Between each convolution layer and
its activation function is inserted a batch normaliza-
tion layer[10]. This introduces very few parameters
and greatly improves generalization, yielding an im-
provement of 10% in accuracy for the VGG8 model.
Additionally, the classifier also incorporated dropout
layer before fully-connected filter[11].

Global average pooling Instead of flattening the features
maps obtained at the end of the convolution sequence
and plugging the MLP on the resulting features, we
chose to use global average pooling, averaging each
feature map both on the time and frequency domain.
This reduces the number of parameters with no ap-
parent loss on accuracy. Moreover, GAP layers have
been extensively used in object localization tasks[12],
making this architecture interesting for audio segmen-
tation.

We used three models totalizing 8, 10 and 12 layers re-
spectively, including the fully-connected layers. Larger sizes
were shown to overfit. These models are much shallower
than actual VGG networks used in computer vision (at least
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16 layers), but the drastically reduced number of parameters
(5.3 versus 138 millions) allows them to cope with the small
amount of examples in the dataset.

3.2. Residual networks

Residual networks[13] have introduced the concept of skip-
connection, that have been reused in many architectures, in-
cluding audio processing tasks[14]. It consists in adding the
input to the output of a convolution block, with the initial
motivation of not harming performances when adding lay-
ers. These skip connections coupled with batch normaliza-
tion make them remarkably robust to overfitting.

We have tested several standard sizes of residual net-
works in order to assess their behavior on a relatively small
dataset, selecting three in the end: 18, 34 and 50. These
are canonical architectures described in the original paper,
the only addition we made was a dropout layer between the
GAP layer and the fully-connected classifier. Note that the
50-layered version uses bottlenecks blocks while the other
two use standard ones.

3.3. Training

Our networks were trained using the data segmentation pro-
vided with the data, on each of the four dataset of mel-
spectrograms. When processing a pair of spectrograms (L/R,
M/S and H/P), we set the input channels of our networks
to two. Training was performed using gradient-descent with
momentum, with a batch-size of 64, an initial learning rate of
10−2 divided by 2 if no improvement was observed on vali-
dation loss for 10 epochs. To prevent overfitting, we stopped
the training if the average loss did not improve over a sliding
window spanning the last 30 epochs.

After training, each network produced a set of predictions
and a set of features for each dataset. The features are defined
as the output of the GAP layer for both architectures. These
outputs were stored in order to perform ensemble methods
(figure 1).

4. ENSEMBLING

Ensemble methods are a common technique used to improve
generalization, involving making a classification choice
based on the output of several models. Common ensemble
methods include voting, taking the maximum average classi-
fication probability over models or using special algorithms
designed to optimize the weight of each model.

We explored two methods : mean of probabilities and
training a multi-layer perceptron on extracted features.

Mean probabilities Averaging prediction probabilities is a
straightforward method that provides results a bit more
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Figure 3: Confusion matrix of the NN no50 system

robust compared to voting, as it is more stable on dif-
ficult examples because outputs are not binary.

MLP We hoped that a multi-layer perceptron trained on the
extracted features can detect complex patterns across
models and perform better than simple ensembling of
outputs. However, it is also very prone to overfitting,
as extracted feature are already very expressive. Con-
sequently, we tried to train it with different subsets of
extracted features.

In the end, each set of spectrograms was used to train 6
models, so the ensemble was performed on up to 24 models
in total.

Another possible system could be trained end-to-end
with each network outputting features an a global classifier
trained on the aggregation of the networks outputs, allow-
ing each to specialize on different features. However, this
requires holding many parameters in memory thus severely
limits the size of networks used.

5. EXPERIMENTAL RESULTS

The experimental results in table 1 tend to show that VGG-
like models perform better, most likely because residual net-
works tend to overfit the data. Nonetheless, they exhibit in-
teresting performances, with the 50-layer version showing
little accuracy drop (2-3%) compared to the 18-layer one de-
spite having more than twice as many layers.

Mid / Side preprocessing consistently outperforms its
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Model Mono L/R M/S H/P
VGG8 67.9 68.4 73.8 68.5

VGG10 72.8 70.9 77.7 72.8
VGG12 74.6 72.5 77.1 76.2

Resnet18 71.0 70.8 73.7 72.2
Resnet34 69.1 65.6 72.3 68.1
Resnet50 69.2 68.9 71.0 69.4

Table 1: Accuracy of each network

Ensemble Decision method Resnet50 Accuracy
MP all Mean probabilities included 78.4
MP no50 Mean probabilities excluded 79.1
NN all Neural network included 76.4
NN no50 Neural network excluded 79.3

Table 2: Accuracy of ensembles

peers, most likely because the side channel isolates interest-
ing spatial information of the signal.

Both ensemble techniques were tried on two subset of
models : the whole set, or all VGG models and Resnets 18
and 34. This is because Resnet 50 results show severe signs
of overfitting, thus might hinder predictions.

The mean probabilities ensemble allowed to reach an ac-
curacy of 79.1, a small improvement the best model (VGG10
M/S). Although the gain was only marginal, we expect that
generalization was improved.

The trained MLP achieved a final accuracy of 79.3 when
trained on all features but those obtained from Resnet50. We
tried isolating some training example to use them only for
the training of the aggregating classifier, but this yielded poor
results as either extracted features were not good enough, or
the classifier overfitted the data. Although VGG8 display
similar accuracies, it is most likely caused by underfit, thus
less problematic when ensembling.

The confusion matrix (figure 3) shows problematic con-
fusion between several classes: airport an shopping mall,
tram and bus, and most surprisingly, public square and street
traffic.

5.1. Other experiments

Other architectures were also considered but dropped be-
cause they performed poorly:

Attention Both VGG-like and Resnet architectures were
tested with the addition of gated activation function,
often referred to as attention mechanism. Such designs
were first introduced by vision models[15] and popu-
larized on audio processing models by Wavenet[14].

However, experiments did not show a statistically sig-
nificant improvement from this design compared to
simply fitting a ReLU activation function.

Raw audio Models were also adapted to work on raw au-
dio, effectively by swapping all 2D convolution fil-
ters with 1D equivalents. First results were promis-
ing, but these models were difficult train, because of
the time and memory needed to run them, and hyper-
parameter optimization was fairly complex. We have
also tested two existing architectures working with raw
audio - Envnet[16] and Wavenet[14] - but their results
were only slightly above the baseline. Moreover, be-
cause these models work with lower-level data, they
need more layers compared to spectral-based models,
resulting in higher overfit probability.

Cepstral features Models were also trained using cepstral
features, namely MFCC obtained from the mel spec-
trograms, but this yielded a significant drop in accu-
racy, so they were not considered for the ensemble
methods.

6. CONCLUSION

Our system using an ensemble of classical vision models to
classify acoustic scenes yielded an improvement of nearly
20 points in accuracy compared to the baseline of the chal-
lenge. Although not really original, our approach allowed
to highlight the importance of regularization layers, in par-
ticular batch normalization, and validated the use of global
average pooling layers to reduce number of parameters.

Despite skip connections not being able to completely
negate overfitting, residual networks proved to perform well
with respect to their depth. As such we believe they could
become the next state-of-the-art model in audio recognition
once larger datasets are available.
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