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ABSTRACT 

This presentation describes our approach for large-scale weakly 
labeled semi-supervise sound event detection in domestic envi-
ronments (TASK4) of the DCASE 2018. Our structure is based 
on Convolutional Recurrent Neural Network (CRNN) using raw 
waveform. The conventional Convolutional Neural Network 
(CNN) is modified to adopt Gated Linear Unit (GLU), ResNet, 
and Squeeze-and-Excitation (SE) network. Then three Recurrent 
Neural Networks (RNNs) follow. Each RNN receives features 
from different layers, respectively, and the outputs of RNNs are 
concatenate for final classification by Feed-forward connection 
(FC) layers. Simple data augmentation method is also applied to 
augment small amount of labeled data. With this approach F1 
score of 5.5% improvement is achieved. 
. 

Index Terms— Sound event detection, weakly super-
vised learning, convolutional recurrent neural network, raw 
waveform, DCASE2018 

1. INTRODUCTION 

The DCASE 2018 task 4, so-called large-scale weakly labeled 
semi-supervise Sound Event Detection (SED) in domestic envi-
ronments, evaluates systems detecting time-boundaries of audio 
events and the classes that the events belong to in an audio clip. In 
order to solve task 4, authors proposed networks based on CRNN 
(Convolutional Recurrent Neural Networks) which is similar to 
DCASE2018 baseline system, but with three major structural 
changes: GLU [1] adopted instead of ReLU, and ResNet [2] and 
SE [3] networks adopted to enhance SED performance. The com-
bination of three models is inspired by GLU in CNNs [8] and 
ReSE [4] block. 
The proposed networks also pursue an end-to-end solution, which 
receives time-domain raw audio samples as input of neural net-
works. This approach intends the proposed networks to utilize 
phase information that might be missed when only magnitudes of 
either Short-Time Fourier Transform (STFT) or Mel-spectrogram 
are received as input. 
The dataset of DCASE2018 task 4 also influenced the training pro-
cedure of the proposed networks. The given dataset is a subset of 
Audioset [5] by Google, which consists of 10 sound-events classes 
and they are unbalanced. Each audio clip can have multiple events. 
The dataset has three sets of training data, which is a big change 

from dataset of DCASE 2017: the first set is weakly labeled train-
ing data consisting of 1,578 clips, the second set is unlabeled in-
domain training data consisting of 14,412 clips, and the third set is 
unlabeled out-of-domain training data consisting of 39,999 clips. 
With this three-set preparation of training data, authors had to start 
to train the networks with the first set (weakly labeled) with data 
augmentation, then include the second and the third set which are 
unlabeled for training after sort of screening step.  
This report will present proposed network structure and training 
method both for audio tagging and sound event detection.  

2. PROPOSED METHOD FOR DCASE2018 TASK4 

Fig. 1 shows the structure of the proposed networks. The structure 
consists of four components: (1) 1D-convolutional layer with a big 
stride [6] to extract low-level features, (2) ResGLU-SE layers 
(ResNet[2] + GLU[1], Squeeze-and-Excitation[3]) to process 
high-level features, (3) bi-directional RNN layers with multi-level 
feature aggregation to capture temporal information and (4) Fully 
Connected (FC) layer to predict posterior of each audio class at 
each frame. 

 
Figure 1: Block diagram of proposed DNN structure 
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The prediction probability at each frame is median-filtered for 
SED and global average pooling of all frames is used for audio 
tagging. 

2.1. Stride 1D-convolution layer 

The stride 1D-convolution [6] layer is used in end-to-end approach 
for audio tagging [6] or speech recognition [11][12]. The coeffi-
cients of a well-trained stride convolution layer has similar fre-
quency-domain characteristics to filter-bank which has high reso-
lution for low frequencies [6][11][12].  
Although the stride layer behaves in a similar way to frequency-
domain transform, it has an advantage of overcoming problems 
occurring in frequency-domain transformation. For example, the 
parameters employed for frequency-domain transform such as 
window size/type or hop size need not to be optimized [4]. The 
stride layer also considers the phase information in raw waveform 
which is discarded in Mel-frequency spectrum and magnitude 
spectrum of the STFT. 
In the proposed structure, stride layer is at the bottom of the struc-
ture. Batch normalization layer, leaky ReLU activation layer and 
max-pooling for feature pooling [6] is applied after the stride layer. 

2.2. ResGLU-SE block 

Fig. 2 shows the structure of the ResGLU-SE block. SE block is 
connected after combination of GLU and ResNet. Max-Pooling is 
performed to reduce the temporal dimension at the end of the 
block. Following section describes details of the ResGLU-SE 
block. 
 

 
Figure 2: Block Diagram of the ResGLU-SE 

 

2.2.1. Combination of GLU and ResNet 

The concept of GLU is adopted instead of using ReLU activation 
function in CRNN [8]. GLU is proposed in [1] for language mod-
eling and applied in SED [8]. It reduces the gradient vanishing 
problem of the deep neural network architecture [1]. Gating al-
lows the network to attend to features related to audio events and 
ignore the unrelated features [8]. One ResGLU-SE block contains 
two GLUs and a dropout in the middle. 
The shortcut connection of the ResNets [7] to GLU block is also 
adopted. It was observed that the optimization difficulty was 
made easier and the initial training speed was accelerated by 
shortcut connection [7].  
In the preliminary test in audio tagging, authors found that the 
time to train the proposed networks was much longer than the time 
to train networks receiving power-spectrum. The combination of 
ResNet and GLU helps reducing the training time. 

2.2.2. SE block 

SE block is a structure derived from Squeeze-and-Excitation Net-
works. It adaptively recalibrates channel-wise feature responses 
[3]. This block follows after shortcut connections to enhance rep-
resentation power of the ResGLU block. 
In this process, by using global average pooling, the output of 
each channel is averaged by reducing the temporal dimensionality 
to 1. This global temporal information enters two FC layer struc-
tures that modelling interdependencies between channels [3]. Di-
mension of the first channel is same as input. As in the previous 
study [4], dimension of the second channel is found grid search. 

2.3. Aggregation of Multi-Level Features 

The outputs of the last three ResGLU-SE blocks are connected to 
each Bi-RNN block separately. The output features of the Bi-
RNN is concatenated and passed by two FC layers. The channel 
size of the first FC layer is same as input vector dimension and 
batch normalization and ReLU activation is applied to the first FC 
layer. The global average pooling block in the Fig. 1 is applied for 
the audio tagging.  
By combining multi-level features, we can supplement missing 
information from the last features. This allows you to detect sound 
events using more information than using only the ResGLU-SE 
block. 

3. DATA AUGMENTATION 

3.1. Audio tagging 

Since the given dataset provides very small number of labeled data 
(1,578 clips for 10 classes), authors augmented the labeled data to 
train the proposed networks as much as possible. However, aug-
mentation would not be sufficient for the networks to be  
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Figure 3: Block diagram of the network training process including 
data augmentation 
 
generalized, so authors utilized the more real data, i.e. unlabeled 
in-domain training data (14,412 clips for 10 classes). The Fig. 3 
describes the whole process of the network training including data 
augmentation. 
Firstly, weakly labeled training dataset is augmented, the aug-
mented dataset is combined with original dataset, and the new da-
taset is generated. The new dataset is assumed to have collect la-
bels. Secondly, the unlabeled in domain dataset is labeled by the 
prediction and can be called a pseudo-labeled dataset. Authors 
merged the predicted set into the new training set and utilized for 
training at the 2nd training step. 
In this presentation, following four augmentation methods: time 
stretching (TS), pitch shifting (PS), dynamic range compression 
(DRC) and block mixing (BM). 
PS, TS and DRC are widely used in data augmentation for audio 
tagging [9]. TS changes speed of the audio while keeping the pitch 
and PS changes vice versa.  
Two DRC curves shown in Fig. 4 are used to compress the dy-
namic range of the audio sample. The curves are taken from Dolby 
E standard [10]. 
 The BM is implemented by simply adding two different audio 
clips. The labels of the mixed audio are the sum of the labels of 
the two source clips. Before adding two audio signals, both of 
them are normalized to have the same root mean square (RMS) 
value. 

Figure 4: Two DRC curves 
 

Augmentation 
method TS* PS** DRC BM 

Number of the  
generated clips 3156 3156 3156 6312 

Table 1. Data augmentation methods and the number of the gen-
erated data. *Time stretching rate of (0.81, 0.93, 1.07, 1.18) and 
**Pitch shift of (-2, -1, 1, 2) octave were used. 

3.2. Sound event detection 

All weakly labeled data has no time duration of the event. To im-
prove time segmentation performance, the network should be 
trained by the strong labeled audio, which has onset and offset 
time of the events. 
By the simple energy-based event detection, the dataset for the 
second training is strongly labeled. The RMS energy of the 0.5 
second interval is obtained at 0.1 second intervals. Labeling is 
performed based on the averaged RMS value of entire audio clip. 
There is no prior strong label information, all labels of the audio 
are attached to detected intervals. 
The BM is applied for strongly labeled audio clips as in audio 
tagging. Entire audio clip or the labeled section can be used in 
mixing. 

4. EXPERIMENTS AND RESULTS 

4.1. Architecture 

Our architecture performs audio tagging and SED for the audio 
clips with 10 seconds long.  Zero padding was performed for au-
dio clips shorter than 10 seconds. The rectangular window size of 
0.5 second and hop size of 0.1 second to extract single frame were 
used. Each frame is input of the strided 1-D convolutional layer. 
The strided 1-D convolutional layer has filter size of 128 which is 
a frame size and stride length of 57 at sampling rate of 22.05kHz. 
Leaky ReLU activation with slope of 0.3 and max-pooling layer 
with pooling size 4 is applied after stride 1D-convolution layer. 
Parameters of the ResGLU-SE layer are shown in Table 2. The 
amplifying ratio [4] is 12 and dropout rate is 0.2 for all the layers.  
Channel dimension of each Bi-RNN is 64, dropout ratio is 0.2 and 
activation function is tanh. After the Bi-RNN layer, the first FC 
layer has the channel dimension of 396 and ReLU activation layer. 
The second FC layer has the channel dimension of 10 and sigmoid 
activation layer. 
For SED, median filter is applied to the output of the second FC 
layer. For audio tagging, global averaging layer averages the out-
puts of the second FC for all the frames of the input clip.  
Binary cross-entropy is used as the loss function and Adam [6] 
optimization method is used. 

4.2. Training and SED 

4.2.1. 1st training and prediction 

The proposed network in the Fig. 1 is trained in the first training. 
Two sampling rates of 44.1kHz and 22.5kHz were used as the in-
put signal. 80% of weakly labeled data were used as training sets 
and 20% were used as validation sets. The same ratios were used 
for both case with and without data augmentation. 

Layer Filter 
dim. 

Filter 
size 

Filter 
stride 

Pooling 
size 

Pooling 
stride 

1st 192 3 1 3 3 
2nd 192 5 1 4 4 
3rd 192 5 1 4 4 
4th 384 5 1 4 4 

Table 2. Parameters of the ResGLU-SE layer 
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Structure Fs 
[kHz] 

F1 
[%] 

Precision 
[%] 

Recall 
[%] 

Baseline 44.1 74.27 - - 
Proposed  
structure 

44.1 70.20 77.32 65.34 
22.05 74.16 79.19 70.72 

Proposed  
structure 

44.1 89.58 94.00 85.86 
22.05 90.35 92.39 88.81 

GLUs only* 22.05 88.26 92.54 84.99 
Table 3. 1st training result using weakly labeled data. *Proposed 
structure without ResNet and SE 
 

Structure Fs [kHz] F1 [%] Error rate [%] 

Baseline 44.1 14.06  1.54 

GLUs only 22.05 7.8 2.06 
Proposed 
structure 

44.1 21.62* 1.56* 
44.1 24.3** 1.83** 

Table 4. SED results with data augmentation. *Median filter size 
of 1.0 second and 0.5 second** 
 
After 1st training, unlabeled in-domain data is labeled by the 
trained network. The following table summarizes the audio tag-
ging performance of the proposed network in the first training. 

4.2.2. 2nd training 

In the second training, a structure in which the global pooling layer 
was removed from the Fig. 1 is used. Since the second training is 
pre-training for SED, it is assumed that tagged events are exist in 
all intervals of audio. 
Two sampling rates of 44.1kHz and 22.5kHz were used as the in-
put signal. Weakly labeled data for second training includes 
weakly labeled data, augmented data and labeled data by 1st trained 
network is used to training the network. 80% of weakly labeled 
data were used as training sets and 20% were used as validation 
sets, same as the first training. 

4.2.3. 3rd training 

Based on the simple energy-based event detection method, the 
starting and ending points of the events were selected. In the third 
training, labeling is performed within the detected time boundaries 
only. Using the re-labeled data, the trained network in 2nd training 
was retrained. Data augmentation was performed by applying BM 
between re-labeled audio. 

4.2.4. Sound event detection 

SED is performed using 3rd trained network. Median filter size for 
smoothing probability of the event is 0.5 second and 0.3 second. 
Table 4 shows the performance of the proposed method with two 
different median filter size and baseline system provided in 
DCASE 2018. 
 

5. DISCUSSION 

The proposed method is end-to-end approach to the SED. As in 
the case of the network trained by the raw speech/audio signal, the 

non-linear frequency selectivity of the stride 1-D convolution 
layer is observed in the 8~9kHz band. 
 

 
Figure 5. Magnitude spectrum of the stride 1-D convolution layers. 
Normalized and sorted. 
 
In the audio tagging and SED results, the performance is increased 
by adding ResNet, SE block, multi-scale, etc. to the initial GLU 
structure. Also, augmentation can improve performance for lim-
ited data. The third training for Bi-RNN and its subsequent layers 
improves the F1 score about 5.5% with remaining error rate. 

6. CONCLUSION 

We proposed CRNN based network. Our convolutional block is 
combination of GLU with 1D convolutional block, ResNets and 
SE networks. The combined model with multi-level feature aggre-
gation shows improvements in tagging performance compared 
with GLUs only structure. The tagging results are comparable to 
the frequency domain algorithm i.e. baseline system. The pro-
posed structure with simple energy-based event detection shows 
better SED performance than that baseline. 
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