
Detection and Classification of Acoustic Scenes and Events 2018 Challenge

PARTIALLY-SHARED CONVOLUTIONAL NEURAL NETWORK FOR CLASSIFICATION OF
MULTI-CHANNEL RECORDED AUDIO SIGNALS

Technical Report

Kazuhiro Nakadai and Danilo R. Onishi

Honda Research Institute Japan, 8-1 Honcho, Wako, Saitama, JAPAN,
{nakadai,d.onishi}@honda-ri.com

ABSTRACT

This technical paper presents the system used in our submission for
task 5 of the DCASE 2018 challenge [1]. We proposed a partially-
shared convolutional neural network, which is a multi-task system
that contains a common input (the multi-channel log Mel features)
and two output branches, a classification branch, which outputs the
predicted class, and a regression branch, which outputs a single-
channel representation of the multi-channel input data. Since the
system has a shared network between classification and regression,
training for regression is expected to enhance another training for
classification and vice versa. Because task 5 aims at classification
based on multi-channel audio input, we tried to improve classifi-
cation performance with this system by training classification and
regression together. By applying the proposed system incorporated
with parameter tuning of the baseline CNN system, we confirmed
that the classification F1 score increased to 89.94% in four-fold
cross validation, while the baseline system achieved 84.50% .

Index Terms— CNN, sound source classification, sound
source separation, multi-task training

1. INTRODUCTION

The system proposed for DCASE 2018 Challenge task 5 is a multi-
task CNN which contains a classification branch and a regression
branch. Furthermore, in the first few layers of the network some
convolutional filters are shared among both paths. The classifica-
tion path is trained with a cross-entropy loss function with the la-
beled classes as targets, while the regression path is trained with a
mean-squared-error loss function and the training targets are pre-
computed single-channel representations of the multi-channel in-
put data. Multi-task training with shared filters allows the shared
weights to train on data from both tasks. Furthermore, by applying
weighting factors to the classification and regression losses after
the forward pass and prior to back-propagation, one task can act as
a regularizer to the other and thus prevent overfitting. The partially-
shared architecture was initally proposed as a way to harness unla-
beled data, so that even if the classification branch is trained on a
small labeled data set, using a larger regression data set helps the
shared filter to achieve weights that would improve the classifica-
tion side. However, since task 5 of the DCASE 2018 Challenge
has a considerable amount of data, the proposed architecture will
be used to further boost the classification performance.

2. PROPOSED METHOD

The partially-shared architecture initially proposed in [3] used fully-
connected layers as building blocks. This report extends the concept
by using convolutional layers instead.

Figure 1 shows PS-CNN, which is an application of multi-
tasking or, as we call partially-shared architecture, with CNN. In
normal CNN for color image classification, an input to the network
is a set of three two-dimensional images, and each image corre-
sponds to R, G, or B color channels. In order to apply this CNN to
audio data, a multichannel audio input to this network is converted
into two-dimensional acoustic feature matrices (images). Each ma-
trix is generated by temporally aligning acoustic feature vectors for
each channel. Therefore, the number of images is the same as that
of microphones (channels) in the microphone array.

In this implementation of PS-CNN, the acoustic feature matri-
ces for selected channels are shared, and the others are not, that
is, the shared architecture is applied per channel. This achieves
two kinds of training, that is, for regression and classification in PS-
CNN. In a pooling layer, a pooling process is performed per channel
in a similar way to conventional CNN.

Let us formulate processing in a convolution layer, which is
unique in this network. An input to the j-th channel in the i-th
convolution layer is defined by

xi
j = [xi

1,1,j , · · · , xi
m,n,j , · · · , xi

Mi,Ni,j ], (1)

where M i and N i define the size of one two-dimensional data in
the i-th convolution layer.

PSA in Equation (1) is defined as follows: The j-th channel
belongs to subnetwork 1 when 1 ≤ j ≤ Ci

1, and it belongs to
subnetwork 2 when Ci

2 ≤ j ≤ Ci, where Ci is the number of
channels in the i-th convolution layer. This means that the j-th
channel is shared by both subnetworks when Ci

2 ≤ j ≤ Ci
1.

When the k-th filter in the i-th convolution layer is defined by

wi
k = [wi

1,1,k, · · · , wi
m,n,k, · · · , wi

V i,Hi,k], (2)

where V i and Hi define the size of the filter in the i-th convolution
layer.

The output of the j-th channel in the i-th layer is defined by,



Detection and Classification of Acoustic Scenes and Events 2018 Challenge

Table 1: PS-CNN structure. Values separated by slashes are given for classification branch, shared branch and regression branch, in this order.
When a single value is given, it is used in all branches.

Parameter CNN CNN+shared PS-CNN
conv 1 #filters 32 / 0 / 0 32 / 32 / 0 32 / 32 / 32

conv1 size (time x freq) 5×5 5×5 5×5
maxpool1 (time x freq) 5×1 / – / – 5×1 / 5×1 / – 5×1 / 5×1 / 5×1

dropout1 0.2 / 0 / 0 0.2 / 0 / 0 0.2 / 0 / 0
conv 2 #filters 64 / 0 / 0 64 / 64 / 0 64 / 64 / 64

conv2 size (time x freq) 3×1 3×1 3×1
maxpool2 (time x freq) – / – / – – / – / – – / – / –

dropout2 0.2 / 0 / 0 0.2 / 0 / 0 0.2 / 0 / 0
conv 3 #filters 64 / 0 / 0 64 / 0 / 0 64 / 0 / 64

conv3 size (time x freq) 3×1 3×1 3×1
maxpool3 (time x freq) 199×2 / – / – 199×2 / – / – 199×2 / – / –

dropout3 0.2 / 0 / 0 0.2 / 0 / 0 0.2 / 0 / 0
conv 4 #filters 64 / 0 / 0 64 / 0 / 0 64 / 0 / 1

conv4 size (time x freq) 1×1 1×1 1×1
maxpool4 (time x freq) – / – / – – / – / – – / – / –

dropout4 0.2 / 0 / 0 0.2 / 0 / 0 0.2 / 0 / 0
fully-conn1 #nodes 64 / 0 / 0 64 / 0 / 0 64 / 0 / 64

dropout5 0.2 / 0 / 0 0.2 / 0 / 0 0.2 / 0 / 0
output #nodes 9 / 0 / 0 9 / 0 / 0 9 / 0 / 39880

Table 2: Per-class and total F1 scores

class Baseline [2] CNN CNN + shared PS-CNN
Absence 85.41 91.17 89.47 91.14
Cooking 95.14 96.02 95.81 96.10

Dishwashing 76.73 81.89 82.16 83.66
Eating 83.64 91.95 92.61 91.55
Other 44.76 58.61 60.13 61.79

Social activity 93.92 95.98 96.30 96.25
Vacuum cleaning 99.31 99.01 99.89 99.90

Watching TV 99.59 99.82 99.73 99.80
Working 82.03 88.80 88.25 89.29
Average 84.50 89.25 89.37 89.94

yi
m,n,j′ =



σ

 Ci
1∑

j=1

V i∑
v=1

Hi∑
h=1

wv,h,jx
i
m+v,n+h,j + bij


∀(1 ≤ j′ ≤ Ci+1

2 )

σ

 Ci
1∑

j=Ci
2

V i∑
v=1

Hi∑
h=1

wv,h,jx
i
m+v,n+h,j + bij


∀(Ci+1

2 ≤ j′ ≤ Ci+1
1 )

σ

 Ci∑
j=Ci

2

V i∑
v=1

Hi∑
h=1

wv,h,jx
i
m+v,n+h,j + bij


∀(Ci+1

1 ≤ j′ ≤ Ci+1)

(3)

where bij is a bias for the j-th channel in the i-th layer, and σ(·) is
an activate function. For our setting, ELU [4] was used.

Regression data is generated by applying a sound source sep-
aration method to the original multi-channel data. In this case,
Geometric High-order Decorrelation-based Source Separation with
Adaptive Step-size control (GHDSS-AS) [5] was used. Note that,
since it’s a regression task, labels are not required, and therefore tar-
get data can be generated even from unlabeled multi-channel audio.

2.1. Sound Source Separation for Generating Target Data

GHDSS-AS is one of the hybrid algorithms of beamforming and
blind separation such as GSS proposed by Parra et al. [6] and its
online algorithm developed by Valin et al.[7]. GHDSS-AS has two
extensions from GSS-based algorithms. One is the cost function
for separation. GHDSS-AS uses higher order correlation as a cost
function, while GSS uses the second order cross power correlation.
As used in many independent component analysis algorithms, high
order correlation shows higher separation performance, and thus,



Detection and Classification of Acoustic Scenes and Events 2018 Challenge

i-th Convolution Layer
Pooling Layer

regression

classification

1

1

C 
i

C 
i+1

C 
i

C 
i

C 
i+1

C 
i+1

1 1

2

2

V 
i

H 
i

M 
i

N 
i

N 
i+1

M 
i+1

y
m,n,j’

x
m+v,n+h,j

w
v,h,j

Figure 1: A convolution-pooling layer in PS-CNN.

GHDSS-AS fits the task 5 of the DCASE 2018 challenge. The
other extension is an adaptive step-size control, which provides
faster adaptation using stochastic gradient and shorter time frame
estimation.

Using the multi-channel input signal xt and the separated sig-
nal yt at the t-th frame in frequency domain, GHDSS-AS can be
formulated as,

yt = Wtxt, (4)
Wt = Wt−1 − µStJ

′
S(Wt−1) + µGtJ

′
G(Wt−1), (5)

µSt =
∥ϕ(yt−1)y

H
t−1 − diag[ϕ(yt−1)y

H
t−1]∥2

8∥ϕ(yt−1)yH
t−1 − diag[ϕ(yt−1)yH

t−1]ϕ̃(yt−1)xH
t−1∥2

,(6)

µGt =
∥diag[Wt−1D− I]∥2

8∥diag[Wt−1D− I]DH∥2 , (7)

where J′
S(Wt−1) and J′

G(Wt−1) are complex gradients [8] of
JS(Wt−1) and JG(Wt−1), which are defined by,

JS(Wt−1) = ∥ϕ(yt−1)y
H
t−1 − diag[ϕ(yt−1)y

H
t−1]∥2, (8)

JG(Wt−1) = ∥diag[Wt−1D− I]∥2, (9)

where D represents the transfer function between the microphone
array and sound sources, ∥·∥2 indicates the Frobenius norm, diag[·]
is the diagonal operator, and H represents the conjugate transpose
operator. For a nonlinear function, ϕ(y), hyperbolic-tangent-based
function [9] was selected.

Eqs. (8) and (9) show the cost functions used in GHDSS-AS,
and Eqs. (6) and (7) show the adaptive step-size control. From
Eqs. (4) – (9), it is obvious that all processes of GHDSS-AS can
be calcurated from D and the results in the previous frame and the
transfer function. This means that GHDSS-AS is almost parameter-
less besides D.

D can be obtained either from actual impulse response mea-
surements (more specifically, time-stretched pulses), or by numeri-
cal simulation using the geometric relationship between the micro-
phones in the array and the sound sources. The former method usu-
ally performs better than the latter, since the geometric-calculation-
based method excludes reflected sounds and, therefore, does not
take into account the distortions due to the environment. How-
ever, since impulse response measurements were not available for
the DCASE 2018 challenge task 5, the latter method was used.

y
i

1

y
i

2

y
i

3

y
i+1

1

y
i+1

2

y
i+1

3

Layer i Layer i+1

Figure 2: Concatenation of layers in the partially-shared architec-
ture. y1 is the classification branch, y2 the shared branch, and y3
the regression branch.

The center of the linear microphone array used in the task mea-
surements was set as the origin of the coordinate system for the ge-
ometric positions, and then virtual sound sources located at a radius
of 1.0 meter from the origin were placed with an azimuth interval
of five degrees. Also, since the microphone arrays were placed on
the walls, only the front plane is used, and therefore 180◦/5◦ = 36
sound sources were simulated. Finally, the impulse responses sim-
ulated geometrically from the microphones and sources positions
were used to generate the transfer function D.

3. EXPERIMENT SETTINGS

For a sound source separation algorithm, we used the GHDSS-AS
implementation from the open source software for robot audition
Honda Research Institute Japan Audition for Robots with Kyoto
University (HARK) [10]. GHDSS-AS is reported as one of the best
microphone array separation algorithms [11].

For the acoustic features used as the input of the networks, we
adopted Mel filter bank features. The acoustic signals in the datasets
were sampled at 16 kHz and 16 bit. We framed them with a frame
width of 512 samples (32 ms) and a frame shift of 160 samples
(10 ms). We used a complex window [10] as the window function
when performing Short-Time Fourier Transform (STFT). From a



Detection and Classification of Acoustic Scenes and Events 2018 Challenge

complex spectrum obtained by STFT, we calculated 40-dimensional
Mel filter bank feature vectors by setting a lower and higher cut-off
frequency to be 63 and 8,000 Hz, respectively.

Input vectors have 4 channels, 997 time frames (slightly down
from 1,000 frames due to preprocessing) and 40 frequency features.
Labels for the regression branch have similar dimensions, except
they are single-channel vectors.

The network settings are shown in Table 1. Adam [12] was
chosen as the optimizer with a learning rate of 0.001, and the
batch size was 64. A dropout [13] factor of 0.2 was used in
the classification-only branch for both convolutional and fully-
connected layers. An L2 penalty factor of 0.0001 is applied to all
trainable weights, and the ELU activation function [4] was used.
Also, prior to summing up the classification cross entropy loss and
the regression mean square error (MSE), a multiplying factor of
10.0 is applied to the MSE. We performed four-fold cross-validation
using the folds defined by the DCASE challenge. The number of
output nodes in the classification branch matches the number of
classes (9) of the task, and the output of the regression branch is set
to match the size of the separated Mel filter bank features (1 channel
x 40 features x 997 frames = 39880). The number of epochs was
fixed at 100, and the model with the best cross-validation F1 score
for each fold was used for evaluation.

4. RESULTS

Table 2 shows the macro-averaged F1 scores, averaged over the four
folds. Each model structure is described in Table 1. CNN refers to
the model with only plain convolutional layers (the classification
branch of the PS-CNN model). CNN + shared is the model with
classification branch plus the shared branch, thus each partially-
shared layer is similar to Figure 2 without the y3 branch. Since this
version has no regression branch, only classification is performed.
PS-CNN is the full model with classification, shared and regression
branches.

By tuning our CNN architecture, the error was reduced by
30.6% relative to the provided baseline [2]. This can likely be at-
tributed to the deeper architecture (the baseline contains only two
convolutional layers as opposed to four layers in ours) and the use
of all the audio channels in the input (the baseline inputs each chan-
nel of the audio data separately).

The CNN + shared model performed similarly to CNN, so
adding the shared layers does not improve over a plain architecture,
but it does not hurt the performance either. Finally, the full PS-
CNN architecture had a further 6.4% relative error reduction over
the tuned CNN. This result shows that adding the regression branch
to the intermediate model influences the shared layers in a way that
benefits the classification.

5. CONCLUSION

This report proposed the use of PS-CNN, a multi-task CNN archi-
tecture with classification-specific and regression-specific branches,
along with filters that are shared between them, for the 5th task of
the DCASE 2018 Challenge. The labels for the regression branch
were generated by applying the GHDSS-AS sound source separa-
tion technique to the provided multi-channel data, and the trans-
fer function required by the method was generated by geometric
simulation from the provided microphone array information. Our
tuned base CNN model achieved a 30.6% error decrease relative

to the baseline provided by the challenge, and our proposed archi-
tecture had a further 6.4% relative error reduction over the basic
classification-only CNN with a similar structure. Future topics for
study and improvement include trying a deeper architecture and tun-
ing the separation algorithm parameters.

6. REFERENCES

[1] http://dcase.community/challenge2018/.

[2] http://dcase.community/challenge2018/
task-monitoring-domestic-activities.

[3] T. Morito, O. Sugiyama, R. Kojima, and K. Nakadai, “Par-
tially shared deep neural network in sound source separation
and identification using a uav-embedded microphone array,”
in Proceedings of the 2016 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2016, pp.
1299–1304.

[4] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast
and accurate deep network learning by exponential linear
units (elus),” CoRR, vol. abs/1511.07289, 2015. [Online].
Available: http://arxiv.org/abs/1511.07289

[5] H. Nakajima, K. Nakadai, Y. Hasegawa, and H. Tsujino, “Cor-
relation matrix estimation by an optimally controlled recursive
average method and its application to blind source separation,”
Acoustical Science and Technology, vol. 31, no. 3, pp. 205–
212, 2010.

[6] L. C. Parra and C. V. Alvino, “Geometric source separation:
Mergin convolutive source separation with geometric beam-
forming,” IEEE Transactions on Speech and Audio Process-
ing, vol. 10, no. 6, pp. 352–362, 2002.

[7] J.-M. Valin, S. Yamamoto, J. Rouat, F. Michaud, K. Nakadai,
and H. G. Okuno, “Robust recognition of simultaneous speech
by a mobile robot,” IEEE Transactions on Robotics, vol. 23,
no. 4, pp. 742–752, 2007.

[8] D. Brandwood, “A complex gradient operator and its applica-
tion in adaptive array theory,” IEE Proc., vol. 130, no. 1, pp.
251–276, 1983.

[9] H. Sawada, R. Mukai, S. Araki, and S. Makino, “Polar coor-
dinate based nonlinear function for frequency-domain blind
source separation,” in 2002 IEEE Int ’l. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP 2002), 2002, pp.
1001–1004.

[10] K. Nakadai, H. G. Okuno, and T. Mizumoto, “Develop-
ment, deployment and applications of robot audition open
source software HARK,” Journal of Robotics and Mechatron-
ics, vol. 29, no. 1, pp. 16–25, 2017.

[11] H. G. Okuno and K. Nakadai, “Robot audition: Its rise and
perspectives,” in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP 2015), 2015, pp.
5610–5614.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” CoRR, vol. abs/1412.6980, 2014.

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neu-
ral networks from overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014.


