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ABSTRACT

In this work, we ensemble four different models for the audio tag-
ging tasks. The first two models are 2D convolutional neural net-
works (CNNs) that respectively take Mel spectrogram and MFCC
spectrogram as input features, while other last two models are two
1D CNNs architectures that take raw waveform as inputs. Data
augmentation techniques, including time stretch, pitch shift, reverb
and dynamic range compression, are also employed for better gen-
eralization. Transfer learning from two external datasets is also
adopted. These components together contribute to our final recog-
nition performance reported on Kaggle.

Index Terms— Audio tagging, Convolutional neural networks,
Model ensemble, Transfer Learning

1. INTRODUCTION

The development of broadly-applicable sound event classification
models that consider an increased and diverse amount of categories
is highly demanded. These models can be used, for example, in
automatic description of multimedia or acoustic monitoring appli-
cations.

Deep learning techniques have been widely used in the auto-
matic audio tagging community as they can automatically exploit
useful features for audio classification. Besides, ensembling diverse
deep learning models is essential for developing accurate automatic
audio tagging systems, as different architectures are in general able
to exploit different aspects of the audio inputs.

For the automatic audio tagging task, the input features of deep
learning models are of great importance. Though deep learning
models are known for their ability to automatically extract mean-
ingful features from the input data (i.e. using 1d convolution to di-
rectly process raw audio waveforms), the audio tagging community
has shown that calculating the spectrogram of audio is still neces-
sary to achieve high recognition performance [1].

Deep learning models usually require large amounts of train-
ing data to achieve high recognition performance. For example,
large image datasets, such as ImageNet [2], that contain millions of
labelled images make it possible to train a very deep model for ac-
curate image classification [3]. However, for some domain-specific
tasks like medical image classification, it is unrealistic to construct
a dataset as large as ImageNet. Thus, transfer leaning is often em-
ployed for domain-specific tasks to accelerate the training process
and improve the final performance.

In this work, we ensemble four deep learning models for au-
tomatic audio tagging. Two models are based on 2D CNNs and

another two are based on 1D CNNs. 2D CNNs models respec-
tively take Mel spectrogram and MFCC spectrogram as input fea-
tures, while 1D CNNs models directly process raw audio wave-
forms. Our models are finetuned from two external datasets that are
larger than FreeSound [4]: SoundNet [5] and VEGAS [6]. These
components, together with intensive data augmentation techniques
and well-optimized training strategies, contribute to our best audio
tagging performance reported on Kaggle.

2. METHODS

2.1. Data Preprocessing

The audios provided by FreeSound are in different lengths (from
less than two seconds to more than 10 seconds). However, CNNs
with fully connected layers can only process fix-sized input data.
To handle this issue, audios longer than 2 seconds are randomly
cropped to 2s length while those shorter than 2s are zero-padded
to 2s length during training and testing. Although it is common to
resample the input audios to a lower sampling rate, we don’t per-
form this operation in our system, as we find that it leads to interior
performance in general.

The raw audios of 2s are then fed to the 1D CNN models for
training. Meanwhile, Spectrograms are calculated in order to train
the 2D CNN models. This is done by first performing STFT with
window size of 2048 and hop length of 512. Then Mel filterbank
or MFCC filterbank are applied to the STFT with 80 filters. As a
result, we obtain spectrograms of size 173× 80 for audios of 2s.

2.2. Model Architecture

2.2.1. 2D CNNs

We compared three 2D convolution architectures (CNNs without
short-cut connections, ResNet [7] and DenseNet [8]) and find that
DenseNet is the best-performing model. Our DenseNet model con-
tains five dense blocks, with four ”bn-relu-conv” (batch normaliza-
tion, relu activation, 2d convolution layer) units in each dense block.
The growth rate k is set to 32. Global max pooling is used at the
end of DenseNet to reduce the time and the frequency axes. Kernel
regularization (1×10−4) is applied to all convolution and fully con-
nected layers. The kernel sizes of all convolution layers are 3× 3.

2.2.2. 1D CNNs

Our 1D CNNs directly process raw audio waveforms. Two different
1D convolution models are adopted.
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The first model is the fine-tuned version of the pre-trained
SoundNet model [5]. We refer the reader to [5] for the detailed
model architecture.

The second model has ten residual connection blocks [7], with
two 1D convolution layers in each block. 1D Max pooling is used
between every two residual blocks to halve the feature map size
along the time axis. Every time when the feature map size is halved,
the feature map channels double. 1D global max pooling is used at
the end of the model to reduce the time axis. The kernel size of
the first two 1D convolution layers is 32, while the kernel size of
the following convolution layers is 3. Each max pooling layer is
followed by a dropout layer with dropout rate 0.1.

2.3. Training Strategies

All of our models are trained using Keras [9]. Adam [10] with
initial learning rate euqals 0.001 is selected as the optimizer. The
learning rate is reduced by 10 times when the validation loss has not
decreased for 5 epochs. Besides, cyclical learning rate (CLR) [11]
is used to provide quicker model converge. We adopt the triangular
CLR policy and set the number of training iterations per half cycle
to the number of batches in each epoch.

1D CNNs (SoundNet) are finetuned from the 1D CNNs in [5],
while 1D CNNs (ResNet), 2D CNNs (Mel Power Spectrogram) and
2D CNNs (MFCC) are pretrained using VEGAS dataset [6],then
fintuned with the Freesound dataset.

In addition, we apply various data augmentation techniques to
the raw waveforms before converting them to spectrograms, includ-
ing time stretching, pitch shifting, reverb and dynamic range com-
pression. These operations are implemented using SoX1.

We use 10-fold cross validation during training. For each
model, the predicted probabilities of 10 folds on the test set are
averaged to give the final result.

2.4. Evaluation Strategies

We zero-pad or crop randomly the test audios to 2s before predict-
ing their classes with the trained models. However, it is possible
that the randomly cropped audio frame may not contain sufficient
information for classification (e.g. a silent 2s frame may be chosen
out of an original audio labelled as ”bark”). To alleviate this issue,
we discard the prediction result in case it is not certain enough (in
the sense that the highest output probability is smaller than 0.7) and
randomly choose another 2s portion of the test audio for classifica-
tion again.

3. EXPERIMENTAL RESULTS

In this section, we report the mean top-3 accuracy of each model
on the test set as shown in Table 1. It can seen that 2D CNNs are
superior to 1D CNNs; on the other hand, Log-Mel spectrogram is
better than MFCC spectrogram (1D convolution) for this specific
task. Finally, we ensemble these four models by geometrically av-
eraging their prediction probabilities to get the submission result.
The weights of each model are chosen based on their respective
performance and shown in Table 1.

1http://sox.sourceforge.net/

Model MAP@3 Weight
1D Conv (SoundNet) 0.874 ± 0.006 0.2
1D Conv (ResNet) 0.887 ± 0.010 0.2
2D Conv (DenseNet, MFCC) 0.924 ± 0.006 0.2
2D Conv (DenseNet, Log-Mel) 0.938 ± 0.003 0.4

Table 1: Average top-3 accuracy and ensemble weight of each
model calculated on the validation folds. 10-fold cross validation
is used.
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