
Detection and Classification of Acoustic Scenes and Events 2018 Challenge

USING AN EVOLUTIONARY APPROACH TO EXPLORE CONVOLUTIONAL NEURAL
NETWORKS FOR ACOUSTIC SCENE CLASSIFICATION

Technical Report

Christian Roletscheck, Tobias Watzka

Augsburg University
Human Centered Multimedia
Augsburg, 86159, Germany

rolle.roletscheck@t-online.de, tobias.watzka@gmail.com

ABSTRACT

The successful application of modern deep neural networks is heav-
ily reliant on the chosen architecture and the selection of the appro-
priate hyperparameters. Due to the large amount of parameters and
the complex inner workings of a neural network, finding a suitable
configuration for a respective problem turns out to be a rather com-
plex task for a human. In this paper we propose an evolutionary
approach to automatically generate a suitable neural network archi-
tecture for any given problem. A genetic algorithm is used to gener-
ate and evaluate a variety of deep convolutional networks. We take
the DCASE 2018 Challenge as an opportunity to evaluate our algo-
rithm on the task of acoustic scene classification. The best accuracy
achieved by our approach was 74.7% on the development dataset.

Index Terms— Evolutionary algorithm, genetic algorithm,
convolutional neural networks, acoustic scene classification

1. INTRODUCTION

Deep learning techniques have already proven their capability to
achieve outstanding performance in solving various classification
tasks, it is therefore reasonable to use them for acoustic scene
classification also. This trend can be clearly seen in the DCASE
Challenge of 2016 [1] and 2017 [2]. However, finding a suitable
network architecture and corresponding hyperparameters remains
a challenge. Most of these neural networks have been developed
through targeted research by experts. Therefore the motivation for
this work lies in improving the mostly complex trial and error de-
sign process by hand. To facilitate or spare the user the develop-
ment of a neural network, evolutionary algorithms can be used as
optimization methods, which usually find workable solutions in an
acceptable time. For this reason, we have developed an algorithm
that automatically generates convolutional neural networks. Our
self-adaptive evolutionary algorithm uses a genetic representation
and creates deep neural networks from ground up. Thus, we named
it ”DeepSelf-Adaptive-Genetic-Algorithm” short DeepSAGA.

2. GENETIC ALGORITHM

The principle procedure [3, Cap. 3.1] of an evolutionary algorithm
(EA) consists of generating an initial population and its evaluation.
After some cycles have elapsed, the EA will terminate as soon as the

Thanks to..

termination criterion is met. A cycle consists of the steps, selection
of parents, recombination, mutation, evaluation of offsprings and
selection of individuals to form the population of the next cycle. In
the entire course of this work, the term session refers to the holistic
process of an EA (from initialization to termination).

The creation of an executable EA instance requires the speci-
fication of its parameters. The resulting values not only influence
the finding of an optimal solution, but also the efficiency. Finding
suitable EA instance parameters can be made easier using param-
eter control [3, Chap. 7.3]. Self-Adaptive is one of the possible
Parameter-Control techniques. The parameters to be adapted rep-
resent a part of the genetics and are thus part of the evolutionary
search space. Therefore, DeepSAGA has the potential to adapt the
algorithm to the problem while solving the problem itself [3, Chap.
8]. The following subsections describe the implementation of the
components that form DeepSAGA.

2.1. Representation and definition

To enhance readability, we have used a representation analogous to
biological genetics. Within biological terminology, a genome con-
tains all chromosomes and represents the entire genetic of a living
being. A chromosome is a bundle of several genes contained in the
organism, whereby genes determine the different characteristics of
that organism. An allele is a concrete expression of a gene.

In our work, a genome represents the genetic of a neural net-
work and describes its characteristics (its architecture and hyper-
parameters). In the terminology of evolutionary algorithms our
genome is referred to as genotype, since it is part of the evolution-
ary search space. The transformation of a genotype into a solution
(the so called phenotype) for the original problem is called decod-
ing, in our case it is the process of creating and training the network
according to the characteristics described in the genome.

The Figure 1 lists our chromosomes contained in each genome.
The Conv-Block is made up of at least one so called Gene-Bundle.
For each Gene-Bundle a convolutional layer followed by a max-
pooling layer will be added to a neural network architecture. It
therefore contains information (genes) about the number of filters,
filter-shape and filter-stride. In addition each Gene-Bundle contains
genes indicating if optional layers for zero-padding, dropout and
batch-normalization are included. Finally a global-average-pooling
or flatten layer can be used to connect the Conv-Block with the out-
put or further classification layers.



Detection and Classification of Acoustic Scenes and Events 2018 Challenge

Input-Shape
Chromosome-Count

Net-Structure

Batch-Normalization 
Activation-Function
Dropout 
Neuron-Count 

Dense-Layer

ES-Patience
ES-Minimum-Delta
CLR-Step-Size-Factor
CLR-Mode
CLR-Base-Lr
CLR-Max-Lr
SGD-Momentum
Batch-Size 
Sequence-Length
Sequence-Hop-Size

Training-ParametersCrossover-Chance
Mutation-Chance

EA-Parameters

Conv-Block

Gene-Bundle-N

Gene-Bundle-0

Gene-Bundle-1

Conv-Block

Figure 1: Detailed overview of all chromosomes and the genes
listed in a genome. ES stands for early stopping and CLR for cyclic-
learning-rate.

In our chosen representation model an allele for the Batch-Size-
Gene could be, for example, the integer number 128. Finally Fig-
ure 2 illustrates the overall design of our genome.

Genom

N C-0 D-N ETD-1

Figure 2: Illustration of a genome. The square like objects are repre-
sentatives for the chromosomes Net-Structure, Conv-Block, Dense-
Layer, Training- and EA-Parameters.

2.2. Fitness function

A fitness function specifies the quality of a genotype by assigning a
fitness value to it. In our case the focus was mainly on the accuracy
of a neural network. However, to speed up the evolutionary search
process, the number of training epochs of a network was also taken
into account. As a result our score value represents the total fitness
of a population member, meaning the higher the score the better the
quality of a genotype. The following formula illustrates the utilized
fitness function:

score = 0.98 ∗ accuracy + 0.02 ∗ epochlimit − epoch

epochlimit
(1)

In this context, epochlimit stands for the maximum number of
epochs a net is permitted as training time and epoch for the number
of epochs with which the net was actually trained. The distribution
with 98% on accuracy and 2% on the other half, seems to be a solid
approach and is solely based on own empirical observations.

2.3. Population

A population contains possible solution candidates, the individuals
(genotypes). A steady state model [3, Chap. 5.1] is used, to man-
age the population. In this model, only a part of the population is

changed. Thus old individuals are replaced by new individuals (the
offsprings). To promote diversity and the self-adaptive property, the
population size is dynamic. However, since the available resources
are limited, the maximum population size is restricted to 90.

2.4. Parent selection mechanism

The procedure for selecting parents is to distinguish between indi-
viduals on the basis of their quality. An individual is a parent when
it has been chosen to produce offsprings by variation. As described
by Bäck and Eiben [4] the parents are determined by a tournament
selection procedure. Tournament selection [3, Chap. 5.2.4] is con-
ducted by running several ”tournaments” among a few individuals
chosen at random from the population. The winner of each tour-
nament (the one with the best fitness) is selected as a parent. The
tournament size determines the number of participants per tourna-
ment and depends on the population of the current cycle. This also
applies to the number of population members who are allowed to
participate in the tournament. To calculate said number the For-
mula (2) was used, which takes into account the maximum permit-
ted population size.

participants = popsizelimit − popsizecurrent (2)

The tournament size is determined by the formula (3), where
toursizelimit always corresponds to one tenth of the popsizelimit.

toursize = toursizelimit ∗
popsizecurrent

popsizelimit
(3)

If the population limit is reached, the number of participants is
limited to two until the threshold value is undershot again.

2.5. Variation operators

New population members are generated by applying variation oper-
ators to existing individuals. This introduces the necessary diversity
in the population making new innovations possible. The variation
operator can be either of the mutation- or of the recombination-type.

Mutation

A variation operator, which affects only one member of the pop-
ulation, is called mutation. If a genotype is mutated, a (slightly)
altered mutant is formed, which can be described as a child or off-
spring. The mutation chance specifies the probability with which a
mutation takes place.

Genes of the category symbolic are mutated by replacing the
original allele with a randomly selected. However, the current al-
lele has a higher chance of being selected again than the other pos-
sible alleles. This type of mutation is also called sampling.

An allele of the integer type is mutated by a creep mutation [3,
Chap. 4.3.1]. The original value is added to a randomly selected
value from a Gaussian normal distribution with a median of 0, and
a sigma value, which depends on a maximum limit. Therefore, the
sigma value always corresponds to 0.025 (2.5%) times the limit. For
example, if the maximum limit were 1000, the corresponding sigma
value would be 25. There is also a 5% chance that the original value
will be reset.

Nonuniform mutation [3, Chap. 4.4.1] is used to mutate an
allele of the float type. This mutation procedure is similar to the



Detection and Classification of Acoustic Scenes and Events 2018 Challenge

creep mutation, but a different sigma value is selected here, as it is
equated with the individual’s chance of mutation.

Each population member has its own chance of mutation, which
is co-evolved according to the method described in [5]. Before all
other genes, the Mutation-Chance-Gene is mutated using the non-
uniform mutation method. The resulting new mutation chance is
the probability with which the remaining genes are mutated.

Recombination

Recombination, or the so called crossover, is a variation operator
that combines the information of two parent genotypes in one or
two progeny. The crossover chance determines the probability with
which a crossover occurs. If no recombination takes place, a clone
of the respective individual is generated.

Since the crossover chance is part of the evolutionary process,
it is represented by the Crossover-Chance-Gene. Thus, each popu-
lation member has an individual crossover chance. The recombina-
tion process is based on the procedure described in [3, Chap. 8.4.7].
The individual crossover chance pc of a parent is compared with
a random number r (r ∈ [0, 1]). One parent is ”ready to mate” if
pc > r applies. This opens up the following possibilities:

1. When both parents are ready to mate, a crossover takes place.

2. If both parents are not ready to mate, they are cloned.

3. If only one parent is willing to mate, a clone of the unwilling
parent is created. For the remaining individual a new partner
is chosen randomly from the pool of parents, who is also
checked for his willingness to mate.

The recombination itself takes place in the style of a uniform
crossover [3, Chap. 4.2.2]. Taking into account the respective par-
ent individual crossover chance, a descendant receives one chromo-
some of its parents. The exact procedure is depicted in Figure 3.

Parent

N C-0

E

TL-1

L-2

N C-0 ETL-1 L-3L-2

Parent

Offspring

N EL-1 L-2

N C-0 TL-1 L-3

Offspring

C-0 T

L-2 E

Figure 3: Illustrated procedure of our uniform crossover

2.6. Survivor selection mechanism

Similar to the parent selection, the survivor selection procedure also
distinguishes between individuals on the basis of their fitness val-
ues. However, the method is used at a different stage of the evo-
lutionary cycle (after the generation and evaluation of offspring).
Due to the limited resources (e.g. the maximum number of individ-
uals in a population) only certain individuals (the survivors) become
members of the next population. Our selection procedure follows an
age-based [3, Cap. 5.3.1] replacement strategy. Thus, each newly
created individual is assigned a value (remaining lifetime, in short
RLT) using the formula (4) as described by Bäck [4]. The RLT is
reduced by 1 after each cycle, thus determining how long a popula-
tion member remains alive. However, the lifetime of the individual
with the highest fitness remains unchanged. Where MinLT (α)
and MaxLT (ω) stand for the permissible minimum and maxi-
mum lifetime of an individual. The other variables are linked to
the current status of the population. These variables are fitness (i),
AvgFit (AF ), BestFit (BF ) and WorstFit (WF ). They stand
for the fitness of the individual i , the average fitness, the best fit-
ness and the worst fitness of the current population. The prefactor
calculation is η = 1

2
· (ω − α).

RLT (i) =


α+ η · WF−fitness(i)

WF−AF
if fitness (i) ≥ AF

1
2
(α+ ω) + η · AF−fitness(i)

AF−BF
if fitness (i) < AF

(4)
The authorized minimum and maximum lifetime of an individ-

ual has been set to 1 and 7. If the fitness value of a newly created
individual i is better than the average fitness, it receives a lifetime
from 5 to 7, otherwise a lifetime from 1 to 4. Within these sub-
areas, the better individuals have a longer life span than the indi-
viduals with a lower fitness. Assigning a lifetime results in several
overlapping populations.

2.7. Initialization and termination

The individuals of the first population are generated randomly.
Since the available resources are limited, the expressions of the re-
spective genes are bounded. These limits must not be exceeded by
variation operators either.

Since the optimum is not known in advance, the termination
criterion is the completion of the 40th cycle.

3. EXPERIMENTS

3.1. Setup

To evaluate the proposed genetic algorithm we use the TUT Ur-
ban Acoustic Scenes 2018 dataset from subtask A provided by the
DCASE 2018 Challenge [6]. The dataset consists of 10-seconds au-
dio segments from 10 different acoustic scenes. For every acoustic
scene, audio was captured in different cities and multiple locations.
To train and measure the performance of the generated models we
use the development dataset with the suggested partioning for train-
ing and testing.

To generate the input features for the neural networks the stereo
audio recordings were first converted into mono channels. There-
after the librosa library (v0.6.1) [7] was used to extract log mel
spectrograms with 100 mel bands. For the Short-Time Fourier



Detection and Classification of Acoustic Scenes and Events 2018 Challenge

Transform (STFT) a Hamming window with a size of 2048 sam-
ples (43ms) and a hop size of 1024 samples (21ms) was used. The
resulting spectrograms were then divided into sequences with a cer-
tain number of frames that define the sequence length. For the cre-
ation of the sequences an overlap of 50 % was used. The sequence
length can vary depending on the different models generated by the
genetic algorithm.

In order to speed up the process as a whole, several comput-
ers were connected via a self-written network module, which uses
a client-server concept. The server distributes the genotypes from
the current cycle population to all available clients, on which side
the decoding takes place. Altogether 15 clients equipped with an
NVIDIA GTX 1060 were available for the neural network training
process. Therefore depending on the current population size and
complexity of the genomes a cycle took around 2 to 3 hours.

To find a good compromise between exploitation and explo-
ration, two independent sessions of 10 cycles each were initially
completed. Afterwards, the best 30 models from each of these ses-
sions were added to the initial population of a new session.

The best neural network of the final session was used for classi-
fication. In addition, a different strategy was pursued. From a cycle
the 10 best individuals cloud also be selected to vote together on the
class of an audio sample. Where individuals in higher ranks have
more votes to weight them higher. Finally the class with the most
votes wins. This type of classification is referred to in this paper as
population vote.

3.2. Results

Table 3.2 illustrates the final results. At the end our best cnn (named
”Rank1”) reached an average accuracy of 72.8 % on the develop-
ment dataset. For the population vote strategy, on the other hand, an
average accuracy of 74.7 % was reached.

Scene label Baseline
CNN

Rank1
CNN

Population
Vote

Airport 72.9 % 84.9 % 85.7 %
Bus 62.9 % 63.2 % 67.4 %

Metro 51.2 % 71.3 % 71.6 %
Metro station 55.4 % 75.3 % 81.9 %

Park 79.1 % 81.0 % 82.2 %
Public square 40.4 % 53.2 % 56.0 %
Shopping mall 49.6 % 75.3 % 73.8 %

Street, pedestrian 50.0 % 67.2 % 69.6 %
Street, traffic 80.5 % 85.0 % 86.2 %

Tram 55.1 % 72.0 % 72.4 %
Average 59.7 % 72.8 % 74.7 %

Table 1: The class-wise accuracy for task 1 Subtask A evaluated on
the development dataset.

The genome of the ”Rank1” CNN can be seen in Figure 4.

Rank1

Input: (48x100) 
Chrom-Count: 2 Last-Layer: GAP 

BN: True 
Act-Fun: Softmax 
Dropout: 0.3 
Neurons: 10 

ES-Patience: 39 
ES-Min-Delta: 0.001 
CLR-Step-Size: 4 
CLR-Mode: Triangular 
CLR-Base-Lr: 0.001 
CLR-Max-Lr: 0.333 
SGD-Mom: 0.232 
Batch-Size: 126 
Seq-Length: 48 
Seq-Hop-Length: 24 

Cross-Chance: 0.1 
Mut-Chance: 0.2 

Zero-Padding: (1x1)  
BN: True  
Dropout: 0.0  
Conv: 50, (3x16), (1x6) 
Max-Pool: (13x2), (1x1) 

Gene-Bundle-0

Zero-Padding: (2x1)  
BN: False  
Dropout: 0.0  
Conv: 163, (7x12), (1x1)  
Max-Pool: (2x2), (1x1) 

Gene-Bundle-1

Figure 4: Best genome of the session. GAP stands for Global-
Average-Pooling and BN for Batch-Normalization. The numbers
in the brackets are the filter size and the filter stride for the convo-
lutional and max-pooling layers and the first number for the convo-
lutional layer stands for the number of filters.

4. CONCLUSION

In this paper, we described how we developed and evaluated a
genetic algorithm called ”DeepSAGA” to automatically generate
CNNs optimized for the classification of the ten acoustic scenes of
the DCASE 2018 Challenge. With an accuracy of 74.7 % on the de-
velopment dataset the algorithm showed promising results with this
specific dataset. Nevertheless, the approach is also applicable for
other classification problems which could be tested in the future.

Throughout the sessions, the approach of population vote re-
sulted in a higher accuracy than that of the best model of the cor-
responding cycle. However, there were fluctuations in the accu-
racy difference, which should be further researched. Additionally,
the extension to generate neural networks including recurrent layer
could further improve classification results but also introduce a vast
of new parameters that have to be tested by the algorithm.

5. REFERENCES

[1] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database
for acoustic scene classification and sound event detection.”
IEEE, 2016, pp. 1128–1132. [Online]. Available: http:
//ieeexplore.ieee.org/document/7760424/

[2] A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah,
E. Vincent, B. Raj, and T. Virtanen, “DCASE 2017 challenge
setup: Tasks, datasets and baseline system,” in Proceedings of
the Detection and Classification of Acoustic Scenes and Events
2017 Workshop (DCASE2017), 2017, pp. 85–92.

[3] A. Eiben and J. Smith, Introduction to Evolu-
tionary Computing, ser. Natural Computing Series.
Springer Berlin Heidelberg, 2015. [Online]. Available:
http://link.springer.com/10.1007/978-3-662-44874-8

[4] T. Bäck and A. E. Eiben, “An emperical study on GAs
without parameters,” in International Conference on Parallel
Problem Solving from Nature. Springer, 2000, pp. 315–324.
[Online]. Available: https://link.springer.com/chapter/10.1007/
3-540-45356-3 31

[5] T. Bäck, “The interaction of mutation rate, selection, and self-
adaptation within a genetic algorithm.” in PPSN, 1992, pp. 87–
96.

[6] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-device
dataset for urban acoustic scene classification,” 2018. [Online].
Available: http://arxiv.org/abs/1807.09840



Detection and Classification of Acoustic Scenes and Events 2018 Challenge

[7] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “librosa: Audio and music
signal analysis in python,” in Proceedings of the 14th python
in science conference, 2015, pp. 18–25. [Online]. Available:
http://www.academia.edu/download/40296500/librosa.pdf


