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ABSTRACT

Detection and Classification of Acoustic Scenes and Events
(DCASE) 2018 Challenge Task 5 can be regarded as one type of
multichannel acoustic scene classification. The important charac-
teristic of the Task 5 is that a microphone array may be put at differ-
ent locations between the development dataset and the evaluation
dataset, so we should not exploit location-dependent spatial cues
but location-independent ones to avoid overfitting. The proposed
system is a combination of front-end modules based on blind sig-
nal processing and back-end modules based on machine learning.
To avoid overfitting, the front-end modules employ blind derever-
beration, blind source separation, etc., which use the spatial cues
without machine learning. The back-end modules employ one-
dimensional-convolutional-neural-network-(1DCNN)-based archi-
tectures and VGG16-based architectures for individual front-end
modules, and all the 89 probability outputs are ensembled.

Index Terms— acoustic scene classification, blind dereverber-
ation, blind source separation, convolutional neural network, model
ensembling

1. INTRODUCTION

Detection and Classification of Acoustic Scenes and Events
(DCASE) 2018 Challenge Task 5 is an acoustic classification task
for daily activities in a home environment. The task is to esti-
mate 9-class daily activities from the 4-channel 10-second signal
obtained by a microphone array. The Task 5 is similar to the Task
1, but we can make use of spatial cues that can be extracted from
the multichannel signal. Also, the Task 5 has another important
characteristic that the microphone array may be put at different lo-
cations between the development dataset and the evaluation dataset.
Therefore, we should not exploit location-dependent spatial cues
but location-independent ones to avoid overfitting.

The proposed system is a combination of front-end modules
based on blind signal processing and back-end modules based on
machine learning. The front-end modules perform dereverberation,
source separation, and noise reduction. For the front-end mod-
ules, many approaches based on machine learning have been pro-
posed [1], but it can be thought that the machine-learning-based
front-end modules suffers from overfitting because the develop-
ment data is not sufficiently large. Also, it can be thought that ex-
ternal datasets such as Audio Set are not suitable for training the
front-end modules because acoustic features of the Task 5 have
a large gap from those of the external datasets. Therefore, the

front-end modules employ blind dereverberation, blind source sep-
aration, etc., which use the spatial cues without machine learn-
ing, so overfitting is avoided. The back-end modules perform fea-
ture extraction, classification, and ensemble-based decision. In the
back-end modules, log mel energy features and MFCC features
are extracted for individual front-end modules, these features are
given individually to 1-dimensional-convolutional-neural-network-
(1DCNN)-based architectures and VGG16[2]-based architectures,
and the 89 probability outputs from all the networks are ensembled.
By the model ensembling, the participants aim to prevent overfit-
ting.

This paper presents the detail of the proposed system. Experi-
mental results for the development dataset are also shown.

2. PROPOSED SYSTEM

2.1. Whole Architecture

The whole architecture of the proposed system is shown in Fig. 1.
The system consists of two disjoint parts: the first part is called
”front-end”, and the second part is called ”back-end” in this paper.
The modules in the front-end part perform dereverberation, source
separation, and noise reduction. The modules in the back-end part
perform feature extraction, classification, and ensemble-based de-
cision. As shown in Fig. 1, the whole system is very huge but its
architecture is simple.

2.2. Front-End Modules

As explained above, we should not exploit location-dependent spa-
tial cues but location-independent ones to avoid overfitting. The
front-end modules employ blind dereverberation, blind source sep-
aration, etc., which does not use machine learning. Overfitting is
therefore avoided. Moreover, multiple different front-end modules
send different output signals to the back-end in parallel. It can be
considered that this approach is a manner for training/test data aug-
mentation and provides the system with robustness.

The participants assume that reverberation is an important cue
about room activities, so they focus on dereverberation. For blind
dereverberation (BD), an algorithm proposed by Togami et al. [3] is
used for the 4-channel input signal. Togami’s BD is a multi-input-
multi-output (MIMO) approach, so it outputs 4-channel dereverbed
signal. In addition, the reverberation signal is obtained by subtract-
ing the dereverbed signal from the input signal.

In addition, the participants predict that multichannel source
separation extracts turn-taking features in ”social activity”, and they
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use a source separation method. The system employs a blind source
separation (BSS) algorithm proposed by Duong et al. [4]. The 4-
channel dereverbed signal is sent to Duong’s BSS. Duong’s BSS is
also an MIMO approach, and the number of sources is set to 2 in
our system, so the 8-channel separated signal is calculated. The or-
der of the separated sources is arbitrary, so both the original order
and the inverted order are sent in parallel to back-end classifiers.

Harmonic-percussive sound separation (HPSS) [5] is also em-
ployed in our system because Han et al. [6] reports that the HPSS
is suitable for acoustic classification in DCASE 2017 Task 1. The
HPSS separates the (monaural) input signal into the harmonic sound
and the percussive sound. The proposed system applies an non-
negative matrix factorization (NMF)-based HPSS [7] similarly to
the conventional work [6].

Also, inspired by the conventional work [6], the system
employs a simple beamformer only by addition and subtrac-
tion. The participants expect that the simple beamformer re-
duces noise and extracts spatial cues. The simple beamformer
requires only a very short calculation time in comparison with
other methods. The simple beamformer calculates the output
y(t) = [y1(t), y2(t), y3(t), y4(t)]

T from the input x(t) =

[x1(t), x2(t), x3(t), x4(t)]
T :

y(t) =

 1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

x(t) (1)

where ym represents the m-th channel output, and xm represents
the m-th channel input. The first channel y1 corresponds to the
simple summation, and the other channels y2, y3, and y4 correspond
to beams orthogonal to each other.

From the front-end modules to the back-end modules, the sys-
tem sends (1) the 4-channel input signal, (2) the 4 pairs of the rever-
beration signal and the dereverbed signal, (3) the 4-channel dere-
verbed signal, (4) the 8 pairs of the 2-source separated signals, (5)
the 4 pairs of the harmonic sound and the percussive sound, and (6)
the output of the simple beamformer.

2.3. Back-End Modules

The main elements of the back-end modules are classifiers for each
preprocessed signal. All the classifiers have almost the same ar-
chitecture. First, log mel energy features and MFCC features are
extracted. The frame size is 40 ms, and the hop size is 50 %.
Next, the log mel energy features are given to the 1DCNN-based
baseline network [8], the pre-trained VGG16 [2] connected with
3 dense layers, the pre-trained VGG16 connected with a support
vector machine (SVM), and the fine-tuned VGG16 connected with
3 dense layers (1024-128-32 units). There are many pre-trained
open models, so we have compared the performance of them ex-
perimentally. We have confirmed that the VGG16 has the most
suitable performance for this task. The number of mel filters is
set to 50 and 128 for the 1DCNNs and the VGG16s, respectively.
For the VGG16s receiving the raw input signal, the signal con-
sisting of the 3 copied channels is input because the VGG16 can
receive only 3-channel color images. Also for the VGG16s re-
ceiving the pair of signals, the signal converted to a 3-channel
combination, i.e., the signals from Togami’s BD is converted to
(dereverbed, dereverbed, reverberation), the signals from Duong’s
BSS is converted to (source1, source1, source2), and the signals
from the HPSS is converted to (harmonic, harmonic, percussive).

The VGG16s receiving the simple-beamformed signal use the 3-
channel consisting of y1, y2, and y3. The VGG16 is not used for the
sole dereverbed signal or the Duong’s BSS separated signal because
training for it has not finished until the deadline. The MFCC fea-
tures are used by the 1DCNN-based baseline network. Then, all the
classifiers output the probabilities that the 10-second input signal
belongs to each class. Each classifier is common to all the 4 micro-
phones, and the classifier is also trained by all the 4 microphones.
It can be considered that this approach is a manner for training/test
data augmentation and provides the system with robustness.

In the late fusion module, the 89 output probabilities from all
the classifiers are ensembled. One is selected from four methods:
the first method is probability averaging, the second is the random
forest classifier, the third is the SVM classifier, and the fourth is
“F1-score-weighted probability averaging”. Both the random forest
classifier and the SVM classifier are trained by the pairs of the out-
put probabilities from all the classifiers and the supervision labels.
In “F1-score-weighted probability averaging”, the probabilities of
each classifier are weighted by the square of the worst class-wise F1
score for the classifier, and the final scores are calculated by aver-
aging the weighted probabilities over all the classifiers. Overfitting
is prevented by these ensemble approaches.

3. EXPERIMENT

3.1. DCASE 2018 Challenge Task 5 Dataset

The DCASE 2018 Task 5 dataset, which is a derivative of the SINS
Database [9], includes 9 scenes which are absence, cooking, dish-
washing, eating, other, social activity, vacuum cleaning, watching
TV, working. The development dataset consists of total 268 ses-
sions, which include total 72984 segments of 10 seconds. The de-
velopment dataset was recorded at 16 kHz with 16 bit per sample
by using the microphone arrays at 4 different locations.

3.2. Results

Table 1 shows the F1 scores for each system and each class. The
classification performances of the proposed system are higher than
that of the baseline system.

4. SUBMISSION

The participants submitted the results the four late-fusion systems
yielded: the first is ensembling by probability averaging (submis-
sion 1), the second is ensembling by random forest (submission 2),
the third is ensembling by SVM (submission 3), and the fourth is en-
sembling by F1-score-weighted probability averaging (submission
4). In submission, the classifiers were trained for each fold and used
for ensembling the fold-wise classifiers.

5. CONCLUSION

For DCASE 2018 Task 5, we proposed a system of multichannel
acoustic scene classification. The system is a combination of front-
end modules based on blind signal processing and back-end mod-
ules based on machine learning. As a result, the 89 probability out-
puts from all the back-end classifiers are ensembled. The partici-
pants believe that the architecture of the system is robust to over-
fitting. Evaluation results for the development dataset indicate that
the proposed system improves the classification performance.
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Table 1: F1 scores for the development dataset
Class Baseline Proposed Proposed Proposed Proposed

(mean prob.) (random forest) (SVM) (mean F1-weighed prob.)
Absence 85.41 90.63 87.91 87.36 90.49
Cooking 95.14 96.28 96.54 96.58 96.37
Dishwashing 76.73 83.78 86.43 86.82 84.54
Eating 83.64 92.92 93.93 94.40 93.15
Other 44.76 60.29 62.29 64.76 61.01
Social activity 93.92 96.23 96.26 95.61 95.52
Vacuum cleaning 99.31 100.00 100.00 100.00 100.00
Watching TV 99.59 99.59 99.70 99.54 99.38
Working 82.03 88.06 87.34 87.26 88.07
Average 84.50 89.75 90.04 90.26 89.84
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Figure 1: Layout of the whole system


