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ABSTRACT

This report describes an approach for acoustic scene classification
and its results for the development data set of the DCASE 2018
challenge. Amplitude modulation spectrograms (AMS), which
mimic important aspects of the auditory system are used as fea-
tures, in combination with mel-scale cepstral coefficients which
have shown to be complementary to AMS features. For classifi-
cation, a long short-term memory deep neural network is used. The
proposed system outperforms the baseline system by 6.3-9.3 % for
the development data test subset, depending on the recording de-
vice.

Index Terms— Amplitude modulation spectrograms, MFCCs,
acoustic scene classification, deep neural networks, LSTM

1. INTRODUCTION

Frequency and temporal fluctuations are fundamental attributes of
sound. The tonotopical representation of frequency has been found
in the cochlea and in different areas in the ascending auditory path-
way including the auditory cortex. In neurophysiological experi-
ments, several researchers found neurons in the inferior colliculus
and auditory cortex of mammals which were tuned to certain mod-
ulation frequencies, i.e., temporal fluctuations. The periodotopical
organization of these neurons with respect to different best modu-
lation frequencies was found to be almost orthogonal to the tono-
topical organization of neurons with respect to center frequencies.
Thus, a two-dimensional map represents both spectral and temporal
properties of the acoustical signal (see [1] for a review).

The features used in this study (Amplitude Modulation Spec-
trograms, AMS) mimic these maps and reflect both spectral and
temporal aspects of the input signal. AMS features have been used
in several areas of psychoacoustics and audio processing. Dau et
al. [2, 3] proposed a psychoacoustical model in which tempo-
ral information is extracted by amplitude modulation filter banks
that are physiologically located in the midbrain. In the field of
speech processing, AMS features have originally been used in a
binaural speech enhancement approach utilizing spatial separation
of the speech and noise [4]. For single-channel SNR estimation and
speech enhancement, AMS features have been used in combination
with simple neural networks with one hidden layer [5]. More re-
cently, AMS features were utilized for a noise suppression with a
Bayesian classifier and ideal binary masks. In normal hearing sub-
jects and noise types which were also used for training, substantial

Figure 1: Example of an AMS pattern generated from a 128 ms
segment of speech. Bright shading indicates high energy.

improvements in speech intelligibility could be shown [6]. A com-
plementary feature set consisting of AMS features, relative spec-
tral transform and perceptual linear prediction (RASTA-PLP), and
mel-frequency cepstral coefficients (MFCCs) was combined with
a deep neural network to train binary masks for noisy speech [7].
The authors report substantially increased speech intelligibility in
hearing-impaired listeners. While the speech segments for testing
intelligibility were not included in the training data, the background
noise was also used for training. Thus, generalization to unknown
noise was not investigated in this study.

In the field of acoustic scene classification, AMS features have
been used with a neural network classifier in an early approach
which just distinguished between speech and noise [8]. More re-
cently, AMS features which have been further reduced to just 9 fea-
tures using the Covariance Matrix Adaptation Evolutionary Strategy
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Table 1: Acoustic scene classification rates for the test subset of the
development data, for recording devices A, B and C (percentage).

Scene label B C B,C A A,B,C
1 Airport 44.4 50.0 47.2 68.7 66.1
2 Shopping mall 72.2 66.7 69.5 52.7 54.6
3 Metro station 50.0 27.8 38.9 56.8 54.6
4 Street, pedestrian 33.3 50.0 41.7 56.7 54.8
5 Public square 33.3 44.4 38.9 52.3 50.4
6 Street, traffic 66.7 72.2 69.5 84.6 82.6
7 Tram 33.3 44.4 38.9 74.0 69.7
8 Bus 77.8 72.2 75.0 59.1 61.2
9 Metro 55.6 33.3 44.5 63.6 61.3
10 Park 77.8 72.2 75.5 83.4 82.4
Average 54.4 53.3 53.9 65.2 63.8
Baseline 45.1 46.2 45.6 58.9

were applied for acoustic scene classification [9]. Using a Linear
Discriminant Analysis (LDA) classifier, the authors report an im-
provement of 10 percentage points for the IEEE AASP Challenge
2013 public dataset, compared to the best previously available ap-
proaches.

In this work, a combination of AMS and MFCC features which
have shown to be complementary [10] and a long short-term mem-
ory deep neural network are used for acoustic scene classification.

2. FEATURES

For AMS generation, fast Fourier transforms (FFT) are computed
for overlapping 4 ms segments of the signal with 0.25 ms hop size.
Appropriate summation of neighboring FFT bins yield 40 frequency
channels with a mel-frequency mapping and spanning from 0 to
22 kHz. The resulting amplitudes in each frequency channel are
regarded as envelope signal. The modulation spectra are obtained
by computing FFTs in each frequency channel across a Hanning-
windowed time segment of 128 ms with an overlap of 64 ms. The
modulation frequency resolution is 15.6 Hz. The FFT magnitudes
are multiplied by 15 triangular-shaped windows spaced uniformly
across the 15.6 - 400 Hz range in each mel frequency channel and
summed up to produce 15 modulation spectrum amplitudes. Thus,
each AMS pattern representing 128 ms of the input signal consists
of 40 x 15 = 600 numbers. An example of an AMS pattern generated
from a speech portion is shown in Fig. 1.

In addition to AMS patterns, mel-scale cepstral coefficients
(MFCCs) are used to represent the input signal in a complementary
way [10]. Each AMS pattern representing 128 ms is augmented
with 4 MFCC vectors calculated from 32 ms of the input signal and
containing 40 mel-frequency cepstral coefficients. Thus, each 128
ms segment of the signal is represented by 600 + (4 x 40) = 760
numbers.

3. CLASSIFIER

For classifying the AMS/MFCC patterns, a recurrent neural net-
work (long short-term memory network, LSTM) with three hidden
recurrent layers (1000, 1000 and 500 neurons) was implemented. A
softmax function and cross entropy loss were used. The network

Figure 2: Confusion scatter plot for the development test subset.
Each dot represents one soundfile. Scene labels as given in Table 1.

was implemented with the CNTK toolkit running on a GeForce
GTX 970 GPU.

4. TRAINING AND TESTING

The development dataset consists of 10,080 soundfiles recorded
with three different devices in ten different acoustic scenes.
Each soundfile has a length of 10 s and is represented by 156
AMS/MFCC patterns (64 ms hop size). For training, each
AMS/MFCC pattern was fed into the network with its correspond-
ing label. 150 iterations were computed for training. For testing,
each pattern generated from the test subset was classified indepen-
dently. The acoustic scene which has been detected most often
within a given soundfile was the overall classification result for this
soundfile.

5. RESULTS

The results for the proposed partitioning of the development data
set into train and test data are given in Table 1.

The presented classification system allows for increased scores,
compared to the baseline system. Classification results for record-
ing devices B and C are worse than for device A, which was the
main source for the training data. Thus, the proposed system does
not seem to generalize to mismatched recording devices, although
the improvement compared to the baseline system is higher for de-
vices B and C than for device A. However, the amount of soundfiles
from devices B and C in the test set of the development data is too
limited (18 per acoustic scene and device) to draw statistically firm
conclusions on this. In addition, overfitting might be an issue. Af-
ter training the neural network with the full development data set
(including the development test data subset), there was 100 % clas-
sification accuracy for the test data subset.

The acoustic scenes ”bus” and ”shopping mall” have better clas-
sification rates with devices B and C, compared to device A. This is
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also true for the baseline system.
Figure 2 shows the confusions between acoustic scenes. It can

be seen that ”airport” and ”shopping mall” are often confused with
each other, as well as ”metro”, ”metro station” and ”tram”. These
confusions are not too surprising, as there are also perceptual sim-
ilarities between these scenes. On the other hand, for example,
”shopping mall” has never been mistakenly classified as ”park”, and
vice versa.

The classification rates based on isolated 128 ms AMS/MFCC
patterns (i.e., without considering which scene has been classified
most often in a 10 s soundfile) were 39.6 %, 36.2 %, and 47,4 % for
devices B, C and A, respectively.

6. DISCUSSION

For the development data, the proposed classification approach with
AMS/MFCC features outperforms the baseline system which is
based on MFCC features alone. Thus, the parameter size is much
larger for the proposed system. However, a reduction of the AMS
patterns could be possible without compromising the results [9].
The LSTM neural network has more or less been used ”out of the
box”, but more carefully chosen parameters might have helped to
improve performance, for example with respect to avoiding overfit-
ting and enhancing generalization.
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