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ABSTRACT

We propose a system for bird audio detection based on the innova-
tive CapsNet architecture. It is our contribution to the third task of
the DCASE2018 Challenge. The task consists on a binary detec-
tion of presence/absence of bird sounds on audio files belonging to
different datasets. Spectral acoustic features are extracted from the
acoustic signals, successively a deep neural network which com-
prehend capsule units is trained by means of supervised learning
using binary annotations of bird song activity as target vector in
combination with the dynamic routing mechanism. This procedure
has the aim to incentive the network to learn global coherence im-
plicitly and to identify part-whole relationships between capsules,
thereby improving generalization performance in detecting the pres-
ence bird songs from various environmental conditions. We achieve
a harmonic mean of the Area Under Roc Curve (AUC) score equal
to 85.08 from the cross-validation performed on the development
dataset, while we obtain an AUC equal to 84.43 as preview score
from a subset of the unseen evaluation data.

Index Terms— Bird Audio Detection, CapsNet, CNN,
DCASE2018, Acoustic Monitoring

1. INTRODUCTION

Automatic wildlife monitoring is a key concern nowadays. Climatic
changes, the effects of pollution and alteration of the ecosystems
have to be closely controlled in order to be the litmus test for the
future sustainable technological and political guidelines.

In this context, bird audio analysis is an important task of the
bioacoustics for wildlife and biodiversity monitoring, which can
easily embrace the deep learning concept. In particular, detecting
the presence of bird calls in audio recordings is a very common re-
quired first step for a framework that can perform different kind of
analysis (e.g. species classification, counting), and makes it possi-
ble to conduct work with large datasets (e.g. continuous 24h moni-
toring) by segmenting the data stream into regions of interests.

To encourage the research in automating this task, in 2016
Stowell et al. [1] organized a first edition Bird Audio Detection
(BAD) challenge. It has been appreciated to such an extent that
a new round has been included in one of the tasks of the 2018
IEEE AASP Challenge on Detection and Classification of Acoustic
Scenes and Events (DCASE). In fact, Task 3 consists in determining
a binary decision for the presence/absence of bird sounds on audio
files recorded in very different conditions, comprehending dataset
balancing, birds species, background sounds and recordings equip-
ment. Specifically, participants are asked to build algorithms that

predict whether a given 10-second recording contains any type of
bird vocalization, regardless of the species.

The organizers invite to explore approaches that can either in-
herently generalize across different conditions (including condi-
tions not seen in the training data), or which can self-adapt to new
datasets. The deep neural network based approach we propose has
the aim to counteract the generalization problem by means of an
innovative learning procedure named “capsule routing” which has
shown promising performances since it has been presented [2] and
also in pioneering employments in audio tasks [3].

1.1. Related Works

In very recent years, a strong growth of deep learning algorithms
devoted to the acoustic monitoring has been observed. In partic-
ular, works such as [4, 5, 6] represent milestones, involving Con-
volutional Neural Networks (CNN) for audio signals detection and
classification. These deep neural architectures, combined with the
increased availability of datasets and computational resources, have
allowed large performance improvements, outperforming in most
of the cases the human accuracy [7]. This has also motivated re-
searchers to employ such architecture, eventually combined with
recurrent units [8], in almost all of the tasks proposed in the re-
cent editions of research challenges such as the DCASE [9]. These
algorithms often result among the strongest-performing systems
[10, 11].

Similar results came from the first edition Bird Audio Detec-
tion (BAD2017) challenge, which was held in 2016-2017. In this
case different novel algorithms have been proposed to create robust
and scalable systems able to automate the annotation process of au-
dio sequences containing free-field recordings. The work of Grill
and Schlüter [12] should be also mentioned, which obtained the
highest score and which is based on CNNs trained on Mel-scaled
log-magnitude spectrograms. The outcomes of the BAD2017 are
reported in [13].

A team at Google Brain recently has presented a new com-
putational unit [2] called “CapsNet” with the intent to overcome
two known limitations of the CNNs: the excessive information loss
caused by the pooling and other down-scaling operations and the in-
ability to infer part-whole relationships between the elements which
the deep neural network (DNN) has to detect. In fact, the layers of a
standard CNN are good at detecting space-invariant features which
characterize an image (or a spectrogram in the case of audio spec-
trograms), but are less effective at exploring the spatial relationships
among features (perspective, size, orientation). Capsule routing has
the aim to learn global coherence implicitly, thereby improving gen-
eralization performance. In the BAD application, it means that the
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DNN is driven to learn a general concept of the entities of “bird
song” and “background sounds” without requiring extensive data
augmentation or dedicated domain adaptation procedures, thus mo-
tivating the use of Capsules for the Task 3 of the DCASE 2018.

2. PROPOSED METHOD

The proposed system is a fully data-driven approach based on the
CapsNet deep neural architecture presented by Sabour et al. [2].
The novel computational structure of the Capsules, combined to the
routing mechanism allows to be invariant to intra-class affine trans-
formations and to identify part-whole relationships between data
features.

The whole system is composed of a feature extraction stage
and a detection stage. The feature extraction stage transforms time-
varying audio signal into acoustic spectral features, then the second
stage takes the feature vector as input and maps them to a binary es-
timate of bird song presence. This latter stage is where we introduce
the Capsule neural network architecture. The network parameters
are obtained by supervised learning using annotations of bird song
activity as one hot target vector.

2.1. Feature Extraction

The feature extraction stage operates on mono audio signals sam-
pled at 44.1 kHz. For our purpose, we exploit LogMels as acoustic
spectral representation, following results obtained in various audio
tagging and sound event detection tasks. Firstly, the audio signals
are down-sampled to 16 kHz, because the most relevant frequency
bands related to bird songs are in the range from 2 kHz to 8 kHz
[14]. Then, LogMel coefficients are obtained by filtering the magni-
tude spectrum of the STFT with a filter-bank composed of 40 filters
evenly spaced in the mel frequency scale. The logarithm of the en-
ergy of each band is computed to match the human perception of
loudness. In the STFT computation, the used frame size is equal
to 40 ms and the frame step is equal to 20 ms. All of the datasets
contain 10-second-long WAV files, thus the resulting feature matrix
x ∈ RD1×D2 has a shape 501× 40. The range of feature values is
then normalized according to the mean and the standard deviation
computed on the training sets of the neural networks.

2.2. CapsNet Architecture

Conceptually, a CNN model uses multiple neurons (kernels) which
act as translated replicas of learned feature detectors. As in that
case, the whole input matrix is processed by repeated application of
a function across its sub-regions, obtaining so-called feature maps.
Practically, this is implemented by a convolution of the input data
with a linear filter, adding a bias term and then applying a non-linear
function.

Denoting with Wm ∈ RK1m×K2m the m-th kernel and with
bm ∈ RD1×D2 the bias vector of a generic convolutional layer, the
m-th feature map hm ∈ RD1×D2 is given by:

hm = ϕ (Wm ∗ x+ bm) , (1)

where ∗ represents the convolution operation, ϕ(·) the non-linear
activation function The dimension of the m-th feature map hm

depends on the zero padding of the input tensor: here, padding
is performed in order to preserve the dimension of the input, i.e.,
hm ∈ RD1×D2 . Commonly, Eq. (1) is followed by a pooling layer
in order to be more robust against patterns shifts in the processed

data. This allows them to share knowledge obtained at one position
in an image to other positions, thus being invariant to spatial shifts
and this has proven to be extremely helpful in image interpretation.

Following Hinton’s preliminary works [15], in the CapsNet
each layer in divided into many small groups of neurons called
“capsules”. The scalar-output feature detectors of CNNs are re-
placed with vector-output capsules and routing-by-agreement algo-
rithm is used in place of max-pooling, in order to replicate learned
knowledge across space.

Formally, we can rewrite (1) as

hm =

 α11W11x1 + . . .+ αM1W1MxM

...
α1NWN1x1 + . . .+ αMNWNMxM

 , (2)

In Eq. (2), hm has been partitioned into N groups, or capsules, so
that each row in the column vector corresponds to an output cap-
sule. Similarly, x has been partitioned into M capsules, where xi

denotes an input capsule i, and W has been partitioned into sub-
matrices called transformation matrix. Conceptually, a capsule in-
corporates a set of properties of a particular entity that is present in
the input data. With this purpose, coefficients αij have been intro-
duced. They are called coupling coefficients and they have the aim
to represent the amount of agreement between an input capsule and
an output capsule. αij measures how likely capsule i may activate
capsule j, so if the properties of capsule i agree with the properties
of capsule j in the layer above, αij should be relatively high. The
coupling coefficients are calculated by the iterative dynamic routing
process, which fulfills the idea of assigning parts to wholes.

Capsules in the higher layers should comprehend capsules in
the layer below in terms of the entity they identify. Dynamic rout-
ing iteratively attempts to find these associations with its notion of
agreement, and supports capsules to learn features that ensure their
outputs are sent to the appropriate parents in the layer above.

2.2.1. Dynamic Routing

After giving an abstract description of routing, we describe the
method used in [2] to compute the coupling coefficients. The ac-
tivation of a capsule unit is a vector which holds in its direction
the properties of the entity it represents. The vector’s magnitude
indicates instead the probability that the entity represented by the
capsule is present in the current input. To ensure that the magnitude
is a probability, a squashing non-linear function is used, which is
given by:

vj =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

, (3)

where vj is the vector output of capsule j and sj is its total input.
sj is a weighted sum over all the outputs ui of a capsule in the layer
below multiplied by the coupling matrix Wij :

sj =
∑
i

cijûj|i, ûj|i = Wijui. (4)

The method used to compute the coupling coefficients is listed
in Fig. 2.2.1. It is a procedure that iteratively applies the softmax
function to log prior probabilities βij . These logits are initially set
to βij = 0 to compute vj and then updated based on an agreement
computation αij = vj · ûj|i. The agreement value is a measure of
how similar the directions of capsules i and j are. The use of the
softmax function ensures that

∑
j αij = 1. Thus, αij can be seen



Detection and Classification of Acoustic Scenes and Events 2018 Challenge

Figure 1: The routing algorithm. Source taken from [2].

as the probability that the entity represented by capsule i is a part of
the entity represented by capsule j as opposed to any other capsule
in the layer above.

2.3. CapNet for Bird Audio Detection

The architecture of the neural network is shown in Fig. 2.3. The first
stages of the model are traditional CNN blocks which act as feature
extractors on the input LogMel coefficients. After each block, max-
pooling is used to halve the dimensions. The feature maps obtained
by the CNN layers are then fed to the Primary Capsule Layer that
represents the lowest level of multi-dimensional entities. Basically
it is a convolutional layer whose output is reshaped and squashed us-
ing (3). The final layer, is a capsule layer and it is composed of two
densely connected capsule units. Since the previous layer is also
a capsule layer, the dynamic routing algorithm is used to compute
the output. The model predictions are obtained computing the the
Euclidean length of each output capsule, which represent the prob-
abilities that an input feature vector x belongs to the background
or the bird audio class, thus we consider only the latter as system
output prediction.

Figure 2: Flow chart of the proposed neural network architecture.

3. EXPERIMENTAL SET-UP

The network hyperparameters optimization was obtained by means
of a random search strategy [16]. The number and the shape of con-

volutional layers, the non-linear activation function, the regularizers
in addition to the capsules dimensions and the maximum number of
routing iterations have been varied for a total of 100 configurations.
Details of searched hyperparameters and their ranges are reported
in Table 1. The neural networks training was accomplished by the
AdaDelta stochastic gradient-based optimisation algorithm [17] for
a maximum of 100 epochs and batch size equal to 20 on the margin
loss function. The optimizer hyperparameters were set according
to [17] (i.e., initial learning rate lr = 1.0, ρ = 0.95, ε = 10−6).
It was chosen because it is well-suited for dealing with sparse data
and its robustness to different choices of model hyperparameters.
Furthermore no manual tuning of learning rate is required.

An early stopping strategy was employed in order to avoid over-
fitting. Thus if the validation score does not increase for 20 con-
secutive epochs, the training is stopped and the last saved model
is selected as the final model. In addition, dropout and L2 (with
λ = 0.01) have been used as weights regularization techniques
[18]. The algorithm has been implemented in the Python language
using Keras [19] and Tensorflow [20] as deep learning libraries.

3.1. Dataset

According to the DCASE 2018 guidelines, the performance of the
proposed algorithm has been assessed firstly by using the devel-
opment dataset for training and validation of the system. Then, a
blind test on the provided evaluation dataset was performed with
the models which achieved the highest performance and submitted
to the organizers of the challenge. The complete dataset is com-
posed of recordings belonging to five different collections. Further
details are reported below:

• “freefield1010”: a collection of 7690 excerpts from field
recordings around the world;

• “warblrb10k”: a crowsourced dataset recorded with the War-
blr1 smartphone app. It covers a wide distribution of UK lo-
cations and environments and includes weather noise, traffic
noise, human speech and even human bird imitations; 8000
samples are used in the development dataset while a held-out
set of 2,000 recordings from the same conditions is included in
the evaluation split;

• “BirdVox-DCASE-20k”: 20000 files containing remote mon-
itoring flight calls collected from recordings units placed near
Ithaca, NY, USA during the autumn of 2015;

• “Chernobyl”: dataset collected from unattended remote mon-
itoring equipment in the Chernobyl Exclusion Zone (CEZ). A
totoal of 6620 audio files cover a range of birds and includes
weather, large mammal and insect noise sampled across vari-
ous CEZ environments, including abandoned village, grassland
and forest areas;

• “PolandNFC”: 4000 recordings obtained from a project of
monitoring of autumn nocturnal bird migration. They were
collected every night, from September to November 2016 on
the Baltic Sea coast, Poland, using Song Meter SM2 units with
microphones mounted on 3–5 m poles.

The organizers recommended a 3-way cross-validation (CV)
for the algorithms development, thus in each fold we used two sets
for training and the other one as validation set in order to have scores
comparable with the others challenge participant.

1https://www.warblr.co.uk/
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Parameter Range Distribution CapsNet1 CapsNet 2 CapsNet3
CNN layers Nr. [1 - 4] uniform 3 4 4
CNN kernels Nr. [4 - 64] log-uniform [64,16,8] [32,16,16,32] [32,64,4,64]

CNN kernels dim. [3×3 - 8×8] uniform 3×3 5×5 6×6

Pooling dim. [1×1 - 2×5] uniform [1×5],[1×4], [1×5],[1×4], [1×4],[1×2],
[1×4] [1×2],[1×2] [1×2],[1×2]

CNN activation [tanh - relu] random choice tanh relu relu
CNN dropout [0 - 0.5] uniform 0 0 0

CNN L2 [yes - no] random choice no yes yes
Primary Capsules channels Nr. [2 - 8] uniform 6 2 8
Primary Capsules kernels dim. [3×3 - 5×5] uniform 4×4 4×4 3×3
Primary Capsules dimension [2 - 16] uniform 8 8 2

Capsules dimension [2 - 16] uniform 2 15 10
Capsules dropout [0 - 0.5] uniform 0 0.1 0.3

Max routing iterations [1 - 5] uniform 2 3 2
Batch Normalization [yes - no] random choice yes yes yes

Trainable Params - - 113K 282K 424K

Table 1: Hyper-parameters optimized in the random-search phase and the resulting best performing models.

3.2. Baseline

The baseline system is an adapted version of the method winner of
the BAD2017 [12]. The peculiarity of this algorithm is its double
training procedure. In a first run, the network is trained on the whole
training data. Binary predictions are obtained for the testing data.
The more confident predictions (the ones closer to 0 or 1) are then
added to the training data as so-called “pseudo-labeled” samples.
Thus, a second training run is performed on this extended training
set and the final predictions are yielded.

3.3. Metric

The performance metric of the DCASE 2018 on this task is the
“Area Under the ROC Curve” (AUC). More precisely, it is a strat-
ified AUC: the score is computed separately for each fold of the
evaluation set, then the partial scores are averaged. This procedure
allows to adapt the “detection threshold” to each dataset conditions,
then the performance across datasets are combined in an explicit
weighted fashion, thus the final score is not merely influenced by
the number of files in each subset.

4. RESULTS

4.1. Results on Development dataset

Results reported in Table 2 show both the best performance we ob-
tained on the single CV fold, and the best averaged AUC. We obtain
a harmonic mean for AUC equal to 83.72 for a single configuration,
whilst if we consider the mean of the best performing models on the
single folds we achieve an AUC equal to 85.08.

4.2. Preview Score on Evaluation dataset

We considered as candidates for the test on the evaluation
procedure [21] both the best performing setups on the single
CV folds (submission label Vesperini UnivPM task3 1), and
the setups with the best averaged AUC (submission label Ves-
perini UnivPM task3 2). For the latter, we trained a new model

with the same hyperparameters on the whole development dataset
before performing the predictions on the evaluation dataset.

The DCASE 2018 featured a submission site where contestants
could upload their predictions and compute a “preview score” for
a subset of around 1000 files from the test set. With an ensemble
of the single fold best models trained during the CV procedure we
obtain an AUC score equal to 84.43, while for the model with the
best averaged AUC we obtain an AUC score equal to 81.43.

5. CONCLUSION AND OUTLOOK

In this paper, we have presented an algorithm for bird audio de-
tection based on the CapsNet architecture. We feed a deep neu-
ral network which uses the dynamic routing procedure during the
training with the LogMel extracted from the audio signals in order
to obtain predictions on unseen data recorded in various conditions
possibly also very different from the training set. To assess the per-
formance of the algorithm we conducted experiments on the de-
velopment dataset from the DCASE 2018, obtaining an AUC score
equal to 85.08 with respect to an AUC equal to 83.00 of the baseline
system. For future work, variants [22] or strategy to customize the
dynamic routing can be considered.
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Conf ID Fold 1 Fold 2 Fold 3 Avg Preview Score
Baseline - - - 83.00 89.18
CapNet1 88.22 72.78 74.16 78.39 -
CapNet2 81.77 80.90 85.52 82.73 -
CapNet3 86.59 78.46 86.11 83.72 81.83
Ensemble - - - 85.08 84.43

Table 2: Results on Development dataset in terms of AUC (%).
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[12] T. Grill and J. Schlüter, “Two convolutional neural networks
for bird detection in audio signals,” in 2017 25th European
Signal Processing Conference (EUSIPCO), Aug 2017, pp.
1764–1768.

[13] D. Stowell, Y. Stylianou, M. Wood, H. Pamuła, and H. Glotin,
“Automatic acoustic detection of birds through deep learn-
ing: the first bird audio detection challenge,” arXiv preprint
arXiv:1807.05812, 2018.

[14] R. B. Payne, “Handbook of the birds of the world,” The Wilson
Journal of Ornithology, vol. 122, no. 3, pp. 627–629, 2010.

[15] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transform-
ing auto-encoders,” in International Conference on Artificial
Neural Networks. Springer, 2011, pp. 44–51.

[16] J. Bergstra and Y. Bengio, “Random search for hyper-
parameter optimization,” Journal of Machine Learning Re-
search, vol. 13, no. Feb, pp. 281–305, 2012.

[17] M. D. Zeiler, “AdaDelta: an adaptive learning rate method,”
arXiv preprint arXiv:1212.5701, 2012.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” The Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[19] F. Chollet et al., “Keras,” https://github.com/keras-team/keras,
2015.

[20] M. Abadi et al., “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.
org/

[21] http://dcase.community/challenge2018/.

[22] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with
em routing,” in 6th Int. Conf. Learn. Repr. (ICLR), Vancouver,
BC, 2018.


